A method is presented for imaging single isolated cell nuclei in 3D, employing computed tomographic image reconstruction. The system uses a scanning objective lens to create an extended depth-of-field (DOF) image similar to a projection or shadowgram. A microfabricated inverted v-groove allows a microcapillary tube to be rotated with sub-micron precision, and refractive index matching within 0.02 both inside and outside the tube keeps optical distortion low. Cells or bare cell nuclei are injected into the tube and imaged in 250 angular increments from 0 to 180 degrees to collect 250 extended DOF images. After these images are further aligned, the filtered backprojection algorithm is applied to compute the 3D image. To estimate the cutoff spatial frequency in the projection image, a spatial frequency ratio function is calculated by comparing the extended depth-of-field image of a typical cell nucleus to the fixed focus image. To assess loss of resolution from fixed focus image to extended DOF image to 3D reconstructed image, the 10-90% rise distance is measured for a dyed microsphere. The resolution is found to be 0.9 microm for both extended DOF images and 3D reconstructed images. Surface and translucent volume renderings and cross-sectional slices of the 3D images are shown of a stained nucleus from fibroblast and cancer cell cultures with added color histogram mapping to highlight 3D chromatin structure.
The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro.
Intraoperative assessment of breast surgical margins will be of value for reducing the rate of re-excision surgeries for lumpectomy patients. While frozen-section histology is used for intraoperative guidance of certain cancers, it provides limited sampling of the margin surface (typically <1% of the margin) and is inferior to gold-standard histology, especially for fatty tissues that do not freeze well, such as breast specimens. Microscopy with ultraviolet surface excitation (MUSE) is a nondestructive superficial optical-sectioning technique that has the potential to enable rapid, high-resolution examination of excised margin surfaces. Here, a MUSE system is developed with fully automated sample translation to image fresh tissue surfaces over large areas and at multiple levels of defocus, at a rate of ∼5 min ∕cm 2. Surface extraction is used to improve the comprehensiveness of surface imaging, and 3-D deconvolution is used to improve resolution and contrast. In addition, an improved fluorescent analog of conventional H&E staining is developed to label fresh tissues within ∼5 min for MUSE imaging. We compare the image quality of our MUSE system with both frozen-section and conventional H&E histology, demonstrating the feasibility to provide microscopic visualization of breast margin surfaces at speeds that are relevant for intraoperative use.
We present two new microfabricated cantilever-beam force transducers. The transducers were fabricated from thin silicon-nitride films, and were used respectively to measure forces generated by two small-muscle preparations: the single myofibril, and the single actin filament in contact with a myosin-coated surface. A simple resonance method was developed to characterize the transducers. Because of the high reproducibility of lever dimensions and the consistency of the modulus of elasticity, few calibration measurements sufficed to characterize the stiffness of all the levers on a single wafer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.