The cultivation of native forest soils usually triggers a decline in soil organic matter (SOM) and a deterioration of aggregates. Although switching to conservation tillage (CT) can supply SOM, little is known about the temporal resolution of this change. This study aims to quantify changes in soil organic carbon (SOC) content and SOM composition of the same soil under 14 years of CT, plowing tillage (PT), and native forest (NF). Plowing ameliorates the macroaggregate-mediated loss in SOC content, in both the fine fraction and the coarse particles. Decades of CT can significantly increase both the microaggregates and fine particles related to SOC content, whereas in the finest fraction, the volume of recalcitrant SOC increased the most, and reached the original value under NF. Continuous plowing triggered SOM molecular size increases in both aggregates and the fine fraction, whereas switching to CT restored the molecular SOM size of the fine fraction only. Therefore, this fraction can be changed, even in short periods. Water dissolved the largest and middle-sized molecules of SOM, which are mainly from macroaggregates. Even if aggregation did not increase due to turning to CT, the content of the larger molecules of SOM increased in this short time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.