In systems alternating between sexual and asexual reproduction, sex increases under unfavorable environmental conditions. In plants producing sexual and asexual (apomictic) seeds, studies on the influence of environmental factors on sex are equivocal. We used Paspalum intermedium to study environmental effects on the expression of sexual and apomictic developments, and on resulting reproductive fitness variables. Flow cytometric and embryological analyses were performed to characterize ploidy and reproductive modes, and effects of local climatic conditions on sexual and apomictic ovule and seed frequencies were determined. Seed set and germination data were collected and used to estimate reproductive fitness. Frequencies of sexual and apomictic ovules and seeds were highly variable within and among populations. Apomictic development exhibited higher competitive ability but lower overall fitness. Frequencies of sexual reproduction in facultative apomictic plants increased at lower temperatures and wider mean diurnal temperature ranges. We identified a two-fold higher fitness advantage of sexuality and a Tug of War between factors intrinsic to apomixis and environmental stressors promoting sexuality which influence the distribution of sex in apomictic populations. This points toward a crucial role of local ecological conditions in promoting a reshuffling of genetic variability that may be shaping the adaptative landscape in apomictic P. intermedium plants.
Most apomictic plants are facultative, maintaining the ability to reproduce sexually at different frequencies depending on the taxa, ploidy, and reproductive stage. In this context, Paspalum species are good model systems for studies evaluating the varying levels of apomixis expression. We aimed to identify, in apomictic tetraploid Paspalum species, the degree of apomixis and residual sexuality in three stages of reproductive development, and if their expression varies along them in order to predict their realized impact on the genetic diversity of future generations. Three main stages in the reproductive development (i.e., ovule, seed, and progeny) were studied in tetraploids from populations of P. cromyorhizon and P. maculosum. Mature ovules were studied using cytoembryological analysis, seeds by flow cytometry, and progeny tests with molecular markers. The expression of sexuality and apomixis was compared in each stage. We observed a decline in expression of sexual reproduction through the consecutive stages, jointly with an increase of apomixis expression. Both species showed at least one tetraploid plant capable of producing progeny by sexual means. These small rates of sexually originated progeny prove the ability of apomictic plants to produce low levels of genetic variation through rare events of sexuality. This study also demonstrates the importance of analyzing different reproductive stages in order to get a whole picture of the reproductive outcomes in plant evolution.
Uniparental reproduction, the capacity of an individual to produce offspring autonomously, is expected to facilitate range expansion of populations. Paspalum spp. reproduce uniparentally by sexual (self-fertility) and asexual (apomixis) reproduction and biparentally by sexual (self-sterility) reproduction. We evaluated the relationship between contrasting reproductive strategies (uni- and biparentality) and their impact on the colonizing ability and geographical range sizes of populations. We determined the cytotype composition of 16 populations of P. indecorum, P. cromyorhizon, P. pumilum and P. maculosum and assessed the sexual (self-fertile and self-sterile) and apomictic proportions by cyto-embryological analyses, fertility rates and seed flow cytometry. Data obtained regarding reproductive modes were compared to the distribution range of each cytotype and species. Sexual diploids with moderate degrees of self-fertility and mixed pollination syndromes showed wider distribution ranges than self-sterile diploids. In sexual diploids, increased rates of self-fertility relate to larger distribution areas. In agamic complexes, self-fertility reduces the differences in range sizes between biparental diploids and uniparental tetraploids. In such complexes, the range size of diploid cytotypes explains the range size and dispersal of apomictic tetraploids. Thus, uniparental reproduction via self-fertility and apomixis describes patterns of geographical parthenogenesis in South American species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.