In biogeography, there is growing interest in the analysis of datasets of ever-increasing size and complexity to explain biodiversity patterns and underlying processes. A common approach is biogeographical regionalization, the grouping of organisms based on shared features and how they respond to past or current physical and biological de
Polyploidy and contrasting reproductive traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance and niche divergence. Ecologically specialized diploids maintain cytotype stability in core areas by displacing tetraploids, while broader ecological preferences and a shift from sexuality to apomixis favoured polyploid colonization in peripheral areas where diploids are displaced, and fostered the ecological opportunity for autotetraploids supporting range expansion to open southern habitats.
In systems alternating between sexual and asexual reproduction, sex increases under unfavorable environmental conditions. In plants producing sexual and asexual (apomictic) seeds, studies on the influence of environmental factors on sex are equivocal. We used Paspalum intermedium to study environmental effects on the expression of sexual and apomictic developments, and on resulting reproductive fitness variables. Flow cytometric and embryological analyses were performed to characterize ploidy and reproductive modes, and effects of local climatic conditions on sexual and apomictic ovule and seed frequencies were determined. Seed set and germination data were collected and used to estimate reproductive fitness. Frequencies of sexual and apomictic ovules and seeds were highly variable within and among populations. Apomictic development exhibited higher competitive ability but lower overall fitness. Frequencies of sexual reproduction in facultative apomictic plants increased at lower temperatures and wider mean diurnal temperature ranges. We identified a two-fold higher fitness advantage of sexuality and a Tug of War between factors intrinsic to apomixis and environmental stressors promoting sexuality which influence the distribution of sex in apomictic populations. This points toward a crucial role of local ecological conditions in promoting a reshuffling of genetic variability that may be shaping the adaptative landscape in apomictic P. intermedium plants.
Polyploidy plays a major role in plant evolution. The establishment of new polyploids is often a consequence of a single or few successful polyploidization events occurring within a species’ evolutionary trajectory. New polyploid lineages can play different roles in plant diversification and go through several evolutionary stages influenced by biotic and abiotic constraints and characterized by extensive genetic changes. The study of such changes has been crucial for understanding polyploid evolution. Here, we use the multiploid-species Paspalum intermedium to study population-level genetic and morphological variation and ecological differentiation in polyploids. Using flow cytometry, amplified fragment length polymorphism (AFLP) genetic markers, environmental variables, and morphological data, we assessed variations in ploidy, reproductive modes, and the genetic composition in 35 natural populations of P. intermedium along a latitudinal gradient in South America. Our analyses show that apomictic auto-tetraploids are of multiple independent origin. While overall genetic variation was higher in diploids, both diploids and tetraploids showed significant variation within and among populations. The spatial distribution of genetic variation provides evidence for a primary origin of the contact zone between diploids and tetraploids and further supports the hypothesis of geographic displacement between cytotypes. In addition, a strong link between the ecological differentiation of cytotypes and spatial distribution of genetic variation was observed. Overall, the results indicate that polyploidization in P. intermedium is a recurrent phenomenon associated to a shift in reproductive mode and that multiple polyploid lineages from genetically divergent diploids contributed to the successful establishment of local polyploid populations and dispersal into new environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.