The present study was aimed to investigate the relationships between permeability and membrane retention values (logPe and MR) of the in vitro non-cellular permeability assay, corneal-PAMPA in comparison with experimental Caco-2 permeability data and calculated physicochemical properties (MW, clogP, clogD7.4 , TPSA). For the investigation, 50 structurally and physicochemically diverse drugs were selected and measured in PAMPA model optimized for corneal permeability. The results showed corneal-PAMPA model's orthogonality in terms of passive diffusion to the FDA approved Caco-2 as a gastrointestinal absorption model, while the comparison with physicochemical properties revealed trends between logPe , MR and the lipophilicity descriptors and TPSA.
In vitro non-cellular permeability models such as the parallel artificial membrane permeability assay (PAMPA) are widely applied tools for early-phase drug candidate screening. In addition to the commonly used porcine brain polar lipid extract for modeling the blood–brain barrier’s permeability, the total and polar fractions of bovine heart and liver lipid extracts were investigated in the PAMPA model by measuring the permeability of 32 diverse drugs. The zeta potential of the lipid extracts and the net charge of their glycerophospholipid components were also determined. Physicochemical parameters of the 32 compounds were calculated using three independent forms of software (Marvin Sketch, RDKit, and ACD/Percepta). The relationship between the lipid-specific permeabilities and the physicochemical descriptors of the compounds was investigated using linear correlation, Spearman correlation, and PCA analysis. While the results showed only subtle differences between total and polar lipids, permeability through liver lipids highly differed from that of the heart or brain lipid-based models. Correlations between the in silico descriptors (e.g., number of amide bonds, heteroatoms, and aromatic heterocycles, accessible surface area, and H-bond acceptor–donor balance) of drug molecules and permeability values were also found, which provides support for understanding tissue-specific permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.