This review aims to explain the influence and characterization of the microbiome in the ruminant digestive system by presenting the knowledge collected so far. The knowledge presented in this work is focused on the main factors affecting the microbiome and the main dependencies that have been found in it so far. The microbiome in the rumen is the first to come into contact with the biomass of the forage and its main purpose is to decompose into smaller particles or compounds. With the gradual increase in knowledge about the microbiome, there is a chance to manipulate it so that the animal continues to live in a symbiotic relationship with it, while reducing greenhouse gas emissions to the environment as well as increasing feed efficiency. Therefore, understanding the influence of the ruminant microbiome is the main step to achieve such results. However, learning the relationship between microorganisms is only at an early stage, because research focuses mainly on taxonomy. Future research should focus on interactions in the ecosystem which is the microbiome, on explaining individual functions and on influence of environmental factors.
For decades, skin has been assigned the main role of an insulator of the inside of the body from the external environment, but it also plays a role in maintaining homeostasis. In this study, the level of selected bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) was assessed in three sheep breeds (Świniarka sheep, Uhruska sheep and BCP line (synthetic sheep breed; n = 6) and in two breeds of goats (Boer, Saenian; n = 6) living in the same environment and fed on the same feed, where the aim was to identify differences in terms of race, species and individual differences. Significant differences were found in Firmicute, Actinobacteria and Proteobacteria phyla (p ≤ 0.05). Statistically significant and positive correlations were demonstrated between Actinobacteria and Proteobacteria, Proteobacteria and Bacteroidetes or Firmicutes and Bacteroidetes. The obtained results suggest that the species and racial differences in the level of the studied bacterial phyla may also result from the physicochemical differences of the skin surface, as they could exacerbate the variations in humidity, temperature, composition of antimicrobial peptides (AMP) and lipid content. In addition, individual differences were observed, which indicate a similar effect of an individual on the microbiological composition of its organism.
The aim of the study was a comparative analysis of the hair coat of the Polish Konik and Hucul
pony, focusing on the histological structure and physical parameters of the hair. Hair samples were
obtained from 20 mares—10 of each breed. They were collected in winter, from the side of barrel,
the mane, the tail, and front and rear fetlock. The hairs from the barrel were divided into overhair and
underhair fractions. A higher percentage of underhair (about 70%) as compared to overhair (30%) was
noted in both breeds. The overhair of the Polish Konik was about 50% longer than that of the Hucul
pony, while the length of underhair did not differ between breeds. Both the overhair and the underhair
of the Polish Konik were about 25% thicker than that of the Hucul pony. Elongation of particular types
of hair did not differ significantly between the breeds. It was lowest for fetlock hair (about 45%) and
highest for mane hair (about 55%). The histological structure of the cuticle layer of the hair did not
differ between breeds.
The aim of the study was to examine the effect of dietary supplementation of isomerized poppy seed oil (IPO) enriched with conjugated dienes of linoleic acid (CLA) on cow and sheep milk parameters (fat content, fatty acid profile, Δ9-desaturase index, and atherogenic index). The process of poppy seed oil alkaline isomerization caused the formation of CLA isomers with cis-9,trans-11, trans-10,cis-12, and cis-11,trans-13 configurations in the amounts of 31.2%, 27.6%, and 4.1% of total fatty acids (FAs), respectively. Animal experiments were conducted on 16 Polish Holstein Friesian cows (control (CTRL) and experimental (EXP), n = 8/group) and 20 East Friesian Sheep (CTRL and EXP, n = 10/group). For four weeks, animals from EXP groups received the addition of IPO in the amount of 1% of dry matter. Milk was collected three times: on days 7, 14, and 30. Diet supplementation with IPO decrease milk fat content (p < 0.01). Milk fat from EXP groups had higher levels of polyunsaturated fatty acids, including FAs with beneficial biological properties, that is, CLA and TVA (p < 0.01), and lower levels of saturated fatty acids, particularly short- (p < 0.01) and medium-chain FAs (p < 0.05). The addition of IPO led to a decrease in the atherogenic index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.