COVID-19 has specific characteristics that distinguish this disease from many other infections. We suggest that the pathogenesis of severe forms of COVID-19 can be associated with acidosis. This review article discusses several mechanisms potentially linking the damaging effects of COVID-19 with acidosis and shows the existence of a vicious cycle between the development of hypoxia and acidosis in COVID-19 patients. At the early stages of the disease, inflammation, difficulty in gas exchange in the lungs and thrombosis collectively contribute to the onset of acidosis. In accordance with the Verigo-Bohr effect, a decrease in blood pH leads to a decrease in oxygen saturation, which contributes to the exacerbation of acidosis and results in a deterioration of the patient’s condition. A decrease in pH can also cause conformational changes in the S-protein of the virus and thus lead to a decrease in the affinity and avidity of protective antibodies. Hypoxia and acidosis lead to dysregulation of the immune system and multidirectional pro- and anti-inflammatory reactions, resulting in the development of a “cytokine storm”. In this review, we highlight the potential importance of supporting normal blood pH as an approach to COVID-19 therapy.
The paper considers the problem of the impact of a complex of environmental factors and their impact on the health of young people. Young people aged 18 to 21 years old, who lived up to 18 years old in different environmental conditions, were examined in order to assess the general functional state of their body. The study used a developed non-invasive optical method for assessing the oxygen status of tissues and general functional state, as well as an independent biomedical study. The results of the experiment revealed the significance of the influence of the ecological factors of the region of birth on the functional state of health of the young generation.
The demand for Li secondary batteries is increasing, with the need for batteries with a higher level of performance and improved safety features. The use of a highly concentrated aqueous electrolyte solution is an effective way to increase the safety of batteries because it is possible to use “water-in-salt” (WIS) and “hydrate-melt” (HM) electrolytes for practical applications. These electrolytes exhibit a potential window of >3.0 V, which is attributed to the difference between the HOMO and the LUMO energies of the n orbital of the pure water molecules and that of the water molecules in the hydration shells of a metal ion, according to theoretical predictions. Thus, in the present study, the attenuated total reflectance (ATR)-far-ultraviolet (FUV) spectra of water and super-concentrated aqueous solutions, such as WIS and HM using a Li salt, were experimentally investigated. The effects of anions, cations, and deuteriums on the ATR-FUV spectra were examined. The ATR-FUV method is an excellent means of studying highly concentrated aqueous salt solutions. The results suggest that the transition energy of water molecules in an ultrahighly concentrated aqueous electrolyte containing HM and WIS increased by nearly 0.4 eV (corresponding to an energy shift of over 10 nm) compared to an aqueous electrolyte with a typical water concentration. It was also revealed that the transition energy of water changes depending on the environment of the non-bonding electron, which is directly connected with or affected by hydrogen bonding with other water molecules or directly connected with Li+.
An automated complex for the study of the oxygen status of human body tissues using an artificial trained analytical system is presented. It includes sensory, electronic and computer modules for measuring and analyzing data. System training is implemented according to the principle of dividing the subjects into groups using mathematical methods of data processing and comparing them with data on the degree of adaptive responses obtained in the course of independent biomedical research. After analytical system training, subsequent recognition of the “image” of the test subject and its assignment to one or another group of the type of reaction to the functional load was possible.
The article presents the results of application of the Kohonen artificial neural network (KANN) in assessing the oxygen status of human tissues, as well as for studying the adaptive-compensatory response of the body to functional load. In the experiment, the registered digital oxygen images of the tissue of 31 subjects were distributed into three classes using the KANN. Each group is characterised by different resistance of the organism to hypoxia. The research results have shown the effectiveness of using an artificial neural network structure and the possibility of its implementation for recognition of the functional state of a person under conditions of metabolic hypoxia; it seems relevant and has theoretical and practical significance in the framework of ecological physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.