The demand for Li secondary batteries is increasing, with the need for batteries with a higher level of performance and improved safety features. The use of a highly concentrated aqueous electrolyte solution is an effective way to increase the safety of batteries because it is possible to use “water-in-salt” (WIS) and “hydrate-melt” (HM) electrolytes for practical applications. These electrolytes exhibit a potential window of >3.0 V, which is attributed to the difference between the HOMO and the LUMO energies of the n orbital of the pure water molecules and that of the water molecules in the hydration shells of a metal ion, according to theoretical predictions. Thus, in the present study, the attenuated total reflectance (ATR)-far-ultraviolet (FUV) spectra of water and super-concentrated aqueous solutions, such as WIS and HM using a Li salt, were experimentally investigated. The effects of anions, cations, and deuteriums on the ATR-FUV spectra were examined. The ATR-FUV method is an excellent means of studying highly concentrated aqueous salt solutions. The results suggest that the transition energy of water molecules in an ultrahighly concentrated aqueous electrolyte containing HM and WIS increased by nearly 0.4 eV (corresponding to an energy shift of over 10 nm) compared to an aqueous electrolyte with a typical water concentration. It was also revealed that the transition energy of water changes depending on the environment of the non-bonding electron, which is directly connected with or affected by hydrogen bonding with other water molecules or directly connected with Li+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.