We use dissipative particle dynamics (DPD) to study micelle formation in alkyl sulfate surfactants, with alkyl chain lengths ranging from 6 to 12 carbon atoms. We extend our recent DPD force field [ J. Chem. Phys. 2017 , 147 , 094503 ] to include a charged sulfate chemical group and aqueous sodium ions. With this model, we achieve good agreement with the experimentally reported critical micelle concentrations (CMCs) and can match the trend in mean aggregation numbers versus alkyl chain length. We determine the CMC by fitting a charged pseudophase model to the dependence of the free surfactant on the total surfactant concentration above the CMC and compare it with a direct operational definition of the CMC as the point at which half of the surfactant is classed as micellar and half as monomers and submicellar aggregates. We find that the latter provides the best agreement with experimental results. Finally, with the same model, we are able to observe the sphere-to-rod morphological transition for sodium dodecyl sulfate (SDS) micelles and determine that it corresponds to SDS concentrations in the region of 300-500 mM.
An understanding of how molecules permeate the complex lipid matrix of the stratum corneum (SC) skin barrier is important for transdermal drug delivery, preventing the adsorption of toxic chemicals and tackling skin diseases. In this paper we present atomistic molecular dynamics simulations of skin-lipid bilayers composed of ceramides, cholesterol (CHOL) and free fatty acids at different lipid compositions and levels of hydration and investigate both perpendicular and lateral permeation pathways through the systems. We show that in fully hydrated bilayers the lipids are heterogeneously distributed, with CHOL-rich domains emerging spontaneously during the simulations. Potential of mean constraint force calculations reveal that the most favourable permeation pathway for water in the direction normal to the bilayer is through a CHOL-rich region, probably due to the disordering effect of CHOL on lipids in the gel-phase. In systems with a low water content (akin to real skin) we find that rather than forming continuous layers, water forms flattened ellipsoid-shaped pools between the lipid headgroups, which are separated by dry regions. This implies that there is no continuous aqueous lateral pathway in the SC and may help to explain why skin is such an effective barrier. We propose that the most probable permeation pathway for a small polar molecule consists of hopping from the headgroup region of one bilayer to the next via a dry region, followed by permeation along the bilayer normal through a CHOL-rich region to the centre of the bilayer where it can diffuse laterally in the lower-density lipidic environment before encountering another CHOL-rich region through which it can exit the bilayer.
The design of a new class of materials, called organic molecules of intrinsic microporosity (OMIMs), incorporates awkward, concave shapes to prevent efficient packing of molecules, resulting in microporosity. This work presents predictive molecular simulations and experimental wide-angle X-ray scattering (WAXS) for a series of biphenyl-core OMIMs with varying end-group geometries. Development of the utilized simulation protocol was based on comparison of several simulation methods to WAXS patterns. In addition, examination of the simulated structures has facilitated the assignment of WAXS features to specific intra- and intermolecular distances, making this a useful tool for characterizing the packing behavior of this class of materials. Analysis of the simulations suggested that OMIMs had greater microporosity when the molecules were the most shape-persistent, which required rigid structures and bulky end groups. The simulation protocol presented here allows for predictive, presynthesis screening of OMIMs and similar complex molecules to enhance understanding of their structures and aid in future design efforts.
Properties of four polymers of intrinsic microporosity containing Troger's base units were assessed for CO 2 capture experimentally and computationally. Structural properties included average pore size, pore size distribution, surface area, and accessible pore volume, whereas thermodynamic properties focused on density, CO 2 sorption isotherms, and enthalpies of adsorption. It was found that the shape of the contortion site plays a more important role than the polymer density when assessing the capacity of the material, and that the presence of a Troger base unit only slightly affects the amount adsorbed at low pressures, but it does not have any significant influence on the enthalpy of adsorption fingerprint. A comparison of the materials studied with those reported in the literature allowed us to propose a set of guidelines for the design of polymers for CO 2 capture applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.