We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.
We use dissipative particle dynamics (DPD) to study micelle formation in alkyl sulfate surfactants, with alkyl chain lengths ranging from 6 to 12 carbon atoms. We extend our recent DPD force field [ J. Chem. Phys. 2017 , 147 , 094503 ] to include a charged sulfate chemical group and aqueous sodium ions. With this model, we achieve good agreement with the experimentally reported critical micelle concentrations (CMCs) and can match the trend in mean aggregation numbers versus alkyl chain length. We determine the CMC by fitting a charged pseudophase model to the dependence of the free surfactant on the total surfactant concentration above the CMC and compare it with a direct operational definition of the CMC as the point at which half of the surfactant is classed as micellar and half as monomers and submicellar aggregates. We find that the latter provides the best agreement with experimental results. Finally, with the same model, we are able to observe the sphere-to-rod morphological transition for sodium dodecyl sulfate (SDS) micelles and determine that it corresponds to SDS concentrations in the region of 300-500 mM.
In this paper, we present protocols for simulating micelles using dissipative particle dynamics (and in principle molecular dynamics) that we expect to be appropriate for computing micelle properties for a wide range of surfactant molecules. The protocols address challenges in equilibrating and sampling, specifically when kinetics can be very different with changes in surfactant concentration, and with minor changes in molecular size and structure, even using the same force field parameters. We demonstrate that detection of equilibrium can be automated and is robust, for the molecules in this study and others we have considered. In order to quantify the degree of sampling obtained during simulations, metrics to assess the degree of molecular exchange among micellar material are presented, and the use of correlation times are prescribed to assess sampling and for statistical uncertainty estimates on the relevant simulation observables. We show that the computational challenges facing the measurement of the critical micelle concentration (CMC) are somewhat different for high and low CMC materials. While a specific choice is not recommended here, we demonstrate that various methods give values that are consistent in terms of trends, even if not numerically equivalent.
Neutral dimeric metallocyclic complexes of type [M 2 (L 1 ) 2 B n ] (where M = cobalt(II), nickel(II) and zinc(II), L 1 is the doubly deprotonated form of a 1,3-aryl linked bis-b-diketone ligand of type 1,3-bis(RC(O)CH 2 C(O))C 6 H 4 (R = Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray ] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-b-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-b-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.