Nanocrystalline InP quantum dots (QDs) hold promise for heavy-metal-free optoelectronic applications due to their bright and size-tunable emission in the visible range. Photochemical stability and high photoluminescence (PL) quantum yield are obtained by a diversity of epitaxial shells around the InP core. To understand and optimize the emission line shapes, the exciton fine structure of InP core/shell QD systems needs be investigated. Here, we study the exciton fine structure of InP/ZnSe core/shell QDs with core diameters ranging from 2.9 to 3.6 nm (PL peak from 2.3 to 1.95 eV at 4 K). PL decay measurements as a function of temperature in the 10 mK to 300 K range show that the lowest exciton fine structure state is a dark state, from which radiative recombination is assisted by coupling to confined acoustic phonons with energies ranging from 4 to 7 meV, depending on the core diameter. Circularly polarized fluorescence line-narrowing (FLN) spectroscopy at 4 K under high magnetic fields (up to 30 T) demonstrates that radiative recombination from the dark F = ±2 state involves acoustic and optical phonons, from both the InP core and the ZnSe shell. Our data indicate that the highest intensity FLN peak is an acoustic phonon replica rather than a zero-phonon line, implying that the energy separation observed between the F = ±1 state and the highest intensity peak in the FLN spectra (6 to 16 meV, depending on the InP core size) is larger than the splitting between the dark and bright fine structure exciton states.
The excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism. Here, we use multiphonon Raman scattering and THz time-domain spectroscopy to investigate Fröhlich coupling in CsPbBr3. We identify a longitudinal optical phonon mode that dominates the interaction, and surmise that this mode effectively defines exciton-phonon scattering in CsPbBr3, and possibly similar materials. It is additionally revealed that the observed strength of the Fröhlich interaction is significantly higher than the expected intrinsic value for CsPbBr3, and is likely enhanced by carrier localization in the colloidal perovskite nanocrystals. Our experiments also unearthed a dipole-related dielectric relaxation mechanism which may impact transport properties.
The fine structure of exciton states in colloidal quantum dots (QDs) results from the compound effect of anisotropy and electron-hole exchange. By means of single-dot photoluminescence spectroscopy, we show that the emission of photo-excited InP/ZnSe QDs originates from radiative recombination of such fine-structure exciton states. Depending on the excitation power, we identify a bright exciton doublet, a trion singlet and a biexciton doublet line that all show a pronounced polarization. Fluorescence line 1 narrowing spectra of an ensemble of InP/ZnSe QDs in magnetic fields demonstrate that the bright exciton effectively consists of three states. The Zeeman splitting of these states is well described by an isotropic exciton model, where the fine structure is dominated by electron-hole exchange and shape anisotropy only leads to a minor splitting of the F = 1 triplet. We argue that excitons in InP-based QDs are nearly isotropic because the particular ratio of light and heavy hole masses in InP makes the exciton fine structure insensitive to shape anisotropy.
InP-based colloidal quantum dots are promising for optoelectronic devices such as light-emitting diodes and lasers. Understanding and optimizing their emission process is of scientific interest and essential for large-scale applications. Here we present a study of the exciton recombination dynamics in InP QDs with various shells: ZnS, ZnSe, and (Zn,Cd)Se with different amounts of Cd (5, 9, 12%). Phonon energies extracted from Raman spectroscopy measurements at cryogenic temperatures (4-5 K) are compared with exciton emission peaks observed in fluorescence line narrowing spectra. This allowed us to determine the position of both the bright F = ±1 state and the lowest dark F = ±2 state. We could identify the phonon modes involved in the radiative recombination of the dark state and found that acoustic and optical phonons of both the core and the shell are involved in this process. The Cd content in the shell increases electron wave-function delocalization, and thereby enhances the exciton-phonon coupling through the Fröhlich interaction.
Colloidal InP core/sell nanocrystals are taking over CdSe-based nanocrystals, notably in optoelectronic applications. Despite their use in commercial device such as display screens, the optical properties of InP nanocrystals and especially their relation with the exciton fine structure remains poorly understood. In this work, we show that the magneto-optical properties of ensemble InP-based core/shell nanocrystals investigated in strong magnetic fields up to 30 T are strikingly different compared to other colloidal nanostructures. Notably, the mixing of the lowest spin-forbidden dark exciton state with the nearest spin-allowed bright state does not occur, up to the highest magnetic fields applied. This lack of mixing in ensemble of nanocrystals suggests an anisotropy-tolerance of InP nanocrystals. This striking property allowed us to unveil the slow spin dynamics between Zeeman sublevels (up to 400 ns at 15 T). Furthermore, we show that the unexpected magnetic field-induced lengthening of the dark exciton lifetime results from the hyperfine interaction between the spin of the electron in the dark exciton with the nuclear magnetic moments. Our results demonstrate the richness of the spin physics in InP quantum dots and stress the large potential of InP nanostructures for spin-based applications. KEYWORD:colloidal nanostructure, III-V, hyperfine interaction, dark exciton, high magnetic field
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.