We analyze the properties of degree-ordered percolation (DOP), a model in which the nodes of a network are occupied in degree-descending order. This rule is the opposite of the much studied degree-ascending protocol, used to investigate resilience of networks under intentional attack, and has received limited attention so far. The interest in DOP is also motivated by its connection with the susceptible-infected-susceptible (SIS) model for epidemic spreading, since a variation of DOP is related to the vanishing of the SIS transition for random power-law degree-distributed networks P(k) ∼ k −γ . By using the generating function formalism, we investigate the behavior of the DOP model on networks with generic value of γ and we validate the analytical results by means of numerical simulations. We find that the percolation threshold vanishes in the limit of large networks for γ ⩽ 3, while it is finite for γ > 3, although its value for γ between 3 and 4 is exceedingly small and preasymptotic effects are huge. We also derive the critical properties of the DOP transition, in particular how the exponents depend on the heterogeneity of the network, determining that DOP does not belong to the universality class of random percolation for γ ⩽ 3.
By interpreting a temporal network as a trajectory of a latent graph dynamical system, we introduce the concept of dynamical instability of a temporal network, and construct a measure to estimate the network Maximum Lyapunov Exponent (nMLE) of a temporal network trajectory. Extending conventional algorithmic methods from nonlinear time-series analysis to networks, we show how to quantify sensitive dependence on initial conditions, and estimate the nMLE directly from a single network trajectory. We validate our method for a range of synthetic generative network models displaying low and high dimensional chaos, and finally discuss potential applications.
By interpreting a temporal network as a trajectory of a latent graph dynamical system, we introduce the concept of dynamical instability of a temporal network, and construct a measure to estimate the network Maximum Lyapunov Exponent (nMLE) of a temporal network trajectory. Extending conventional algorithmic methods from nonlinear time-series analysis to networks, we show how to quantify sensitive dependence on initial conditions, and estimate the nMLE directly from a single network trajectory. We validate our method for a range of synthetic generative network models displaying low and high dimensional chaos, and finally discuss potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.