By interpreting a temporal network as a trajectory of a latent graph dynamical system, we introduce the concept of dynamical instability of a temporal network, and construct a measure to estimate the network Maximum Lyapunov Exponent (nMLE) of a temporal network trajectory. Extending conventional algorithmic methods from nonlinear time-series analysis to networks, we show how to quantify sensitive dependence on initial conditions, and estimate the nMLE directly from a single network trajectory. We validate our method for a range of synthetic generative network models displaying low and high dimensional chaos, and finally discuss potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.