Abstract. We study singular perturbations of a class of stochastic control problems under assumptions motivated by models of financial markets with stochastic volatilities evolving on a fast time scale. We prove the convergence of the value function to the solution of a limit (effective) Cauchy problem for a parabolic equation of HJB type. We use methods of the theory of viscosity solutions and of the homogenization of fully nonlinear PDEs. We test the result on some financial examples, such as Merton portfolio optimization problem.
Abstract. We prove some Liouville properties for sub-and supersolutions of fully nonlinear degenerate elliptic equations in the whole space. Our assumptions allow the coefficients of the first order terms to be large at infinity, provided they have an appropriate sign, as in OrnsteinUhlenbeck operators. We give two applications. The first is a stabilization property for large times of solutions to fully nonlinear parabolic equations. The second is the solvability of an ergodic Hamilton-Jacobi-Bellman equation that identifies a unique critical value of the operator.
We develop a direct Lyapunov method for the almost sure open-loop stabilizability and asymptotic stabilizability of controlled degenerate diffusion processes. The infinitesimal decrease condition for a Lyapunov function is a new form of Hamilton-Jacobi-Bellman partial differential inequality of 2nd order. We give local and global versions of the First and Second Lyapunov Theorems assuming the existence of a lower semicontinuous Lyapunov function satisfying such inequality in the viscosity sense. An explicit formula for a stabilizing feedback is provided for affine systems with smooth Lyapunov function. Several examples illustrate the theory.
We consider the long-time behavior of the mean curvature flow in heterogeneous media with periodic fibrations, modeled as an additive driving force. Under appropriate assumptions on the forcing term, we show existence of generalized traveling waves with maximal speed of propagation, and we prove the convergence of solutions to the forced mean curvature flow to these generalized waves
We consider a class of nonlocal generalized perimeters which includes fractional perimeters and Riesz type potentials. We prove a general isoperimetric inequality for such functionals, and we discuss some applications. In particular we prove existence of an isoperimetric profile, under suitable assumptions on the interaction kernel. E E K(x − y)dxdy.1991 Mathematics Subject Classification. 53A10, 49Q20, 35R11.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.