The effect of stone-wool has been studied in both in vivo long term sequential and in vitro methods in male Sprague-Dawley rats. Stone-wool was administered by single intratracheal instillation and the lungs were examined after 1, 3 and 6 months of exposure by morphological methods. UICC crocidolite was applied as a positive control. In addition, the effects of both fibres were examined in primary cultures of alveolar macrophages (AM) and type II pneumocytes (T2) by morphological, biochemical and immunological methods. By the end of 6 months stone-wool induced moderate pulmonary interstitial inflammation and fibrosis without progression, whereas crocidolite induced progressive interstitial inflammation and fibrosis as a function of time. Although stone-wool inhibited phagocytosis, it did not induce serious membrane damage to the cells examined and did not destroy their ultrastructure. It significantly reduced the activity of Cu,Zn/superoxide dismutase (SOD) and alkaline phosphatase (AP) in alveolar macrophages and significantly decreased the activity of AP and gamma-glutamyl transpeptidase (GGT) in type II pneumocytes. Crocidolite, on the other hand, decreased the activity of all enzymes (glutathione peroxidase, GSH-Px; glutathione reductase, GSH-Rd) of glutathione metabolism as well as alkaline phosphatase in alveolar macrophages. It decreased the activity of all enzymes in type II pneumocytes, except for Cu,Zn/SOD. On exposure to stone-wool, the production of inflammatory proteins, macrophage chemoattractant protein-1 (MCP-1) and macrophage inhibitory protein-1alpha (MIP-1alpha) increased in both cultured cells but did not reach the level induced by crocidolite. Our results suggested that stone-wool is less toxic than crocidolite. Whether it is carcinogenic or not, is still an open question.
The risk to human health of exposure to low-level radiation is not precisely known yet. One way of studying this is to carry out in vitro biological experiments with cell cultures and to extend the conclusions to biological models. To relate the macroscopically deteminable 'low dose' to the damage of cells caused by a certain type of ionising particle is nearly impossible. therefore the number of hits and the imparted energy are the significant quantities. They can be estimated by particle transport calculations and by direct measurements. The effect of low dose was investigated in radio-adaptation experiments when mono-layers of different unsynchronised cell cultures were irradiated by neutrons produced in the filtered beam of the Budapest Research Reactor (BRR). The energy deposition was investigated by replacing the mono-layers with etched track detectors of the CR-39 type.
Refractory ceramic fibres (RCF) were studied in male SPRD rats by both in vivo long term sequential and in vitro methods. RCF was administered by single intratracheal instillation and the lungs were examined at the end of months 1, 3 and 6 after exposure. In addition, the direct toxicity of the fibres was examined in a primary culture of alveolar macrophages (AM) and in pneumocytes type II (T2). Pulmonary morphological changes, a number of parameters of the redox system, such as activity of extracellular Cu,Zn/superoxide dismutase (EC-SOD), total glutathione content of the lungs (GSH) and immunoglobulins in bronchoalveolar lavage (IgA, IgG, IgM) and in the blood were measured. The composition of the original RCF and the elemental content of the lung tissue were compared by energy dispersive x-ray analysis (EDXA) before and after exposure. Macrophage alveolitis became confluent and moderate fibrosis developed by the end of month 3, and after 6 months of exposure the intensity decreased to the level of the first month. The RCF did not significantly influence the activity of EC-SOD or the total glutathione content of the lungs. Although aluminium and silicon could be demonstrated by EDXA in the lung tissue at the end of month 3, these elements were no longer detectable by the end of month 6. The RCF decreased IgA significantly in bronchoalveolar lavage (BAL). The main components of RCF induced pulmonary alterations, whereas no significant change could be detected in EC-SOD and GSH. Injuries caused by direct toxicity could be observed in the cell membranes only at the highest concentration. On the basis of these results RCF can be determined as moderately toxic fibres.
Utilizing protein blends improved the amino acid profile of the ingredients, and extrusion processing effectively reduced trypsin inhibitors in all extrudates but only enhanced the in vitro protein digestibility of the pulse-rich extrudates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.