Background and purpose Extracorporeal shock waves (ESWs) are used to good effect in the treatment of soft tissue injuries, but the underlying mechanisms are still unknown. We therefore determined the effects of ESWs on normal fibroblasts in vitro, in order to assess treatment-induced cell response.Methods A normal human fibroblast cell line (NHDF-12519) was treated with ESWs generated by a piezoelectric device (Piezoson 100; Richard Wolfe) using different protocols of impulses (300, 1,000, or 2,000 shots) and energy (0.11 or 0.22 mJ/mm2). Untreated controls and treated cells were cultivated for 12 days following a single shock-wave treatment. Viability, growth rate, and expression of mRNA for TGFβ -1 and collagen types I and III were evaluated at days 3, 6, 9, and 12.Results 1 hour after shock-wave treatment, cell viability showed a decrease related mainly to impulse numbers applied. Fibroblasts treated with energy of 0.22 mJ/mm2 subsequently showed an increase in proliferation from day 6 to day 9 that was higher than in untreated controls, without interference with the normal cell kinetic profile. mRNA expression was also higher in treated fibroblasts than in untreated controls for TGFβ -1 on day 6 and day 9, for collagen type I on day 6, and for collagen type III on day 9.Interpretation These in vitro data confirm that the main factors involved in the repair process of connective tissues are activated by ESWs. The study gives the rationale for, and may provide schedules for, ESW treatment of tendonopathies.
Sex Hormone-Binding Globulin (SHBG), the plasma carrier for androgens and estradiol, inhibits the estradiol-induced proliferation of breast cancer cells through its membrane receptor, cAMP, and PKA. In addition, the SHBG membrane receptor is preferentially expressed in estrogen-dependent (ER+/PR+) breast cancers which are also characterized by a lower proliferative rate than tumors negative for the SHBG receptor. A variant SHBG with a point mutation in exon 8, causing an aminoacid substitution (Asp 327-->Asn) and thus, the introduction of an additional N-glycosylation site, has been reported. In this work, the distribution of the SHBG variant was studied in 255 breast cancer patients, 32 benign mammary disease patients, and 120 healthy women. The presence of the SHBG mutation was evaluated with PCR amplification of SHBG exon 8 and Hinf I restriction fragment length polymorphism (RFLP) procedure. This technique allowed us to identify 54 SHBG variants (53 W/v and 1 v/v) in breast cancer patients (21.2%), 5 variants (4 W/v and 1 v/v) in benign mammary disease patients (15.6%), and 14 variants (W/v) in the control group (11.6%). The results of PCR and RFLP were confirmed both by nucleotide sequence of SHBG exon 8 and western blot of the plasma SHBG. No differences in the mean plasma level of the protein were observed in the three populations. The frequency of the SHBG variant was significantly higher in ER+/PR+ tumors and in tumors diagnosed in patients over 50 years of age than in the control group. This observation suggests the existence of a close link between the estrogen-dependence of breast cancer and the additionally glycosylated SHBG, further supporting a critical role of the protein in the neoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.