Alongside increased proteolysis, the inability to repair damaged skeletal muscle is a characteristic feature of uncontrolled diabetes. This study evaluates the role of oxidative stress in muscle-specific gene regulatory regions and myosin chain synthesis in streptozotocin (STZ)-induced diabetic and ZDF rats. In the gastrocnemius muscle of diabetic rats, prooxidant compounds were seen to increase while antioxidant levels fell. Myogenic regulatory factors-Myo, myogenin, and Jun D-were also reduced, and muscle enhancer factor (MEF)-1 DNA binding activity was impaired. Moreover, synthesis of muscle creatine kinase and both heavy and light chains of myosin were impaired, suggesting that oxidative stress triggers the cascade of events that leads to impaired muscle repair. Dehydroepiandrosterone has been reported to possess antioxidant properties. When it was administered to diabetic rats, in addition to an improved oxidative imbalance there was a recovery of myogenic factors, MEF-1 DNA binding activity, synthesis of muscle creatine kinase, and myosin light and heavy chains. Vitamin E administration to STZ-induced diabetic rats reverses oxidative imbalance and improves muscle gene transcription, reinforcing the suggestion that oxidative stress may play a role in diabetes-related impaired muscle repair. Diabetes
Diabetic cardiomyopathy is characterized by myocyte loss and myocardial fibrosis, leading to decreased elasticity and impaired contractile function. The study examines the downstream signaling whereby oxidative stress, induced by hyperglycemia, leads to myocardial fibrosis and impaired contractile function in the left ventricle of diabetic rats. It also examines the effects of dehydroepiandrosterone (DHEA), which prevents the oxidative damage induced by hyperglycemia in experimental models. DHEA was administered for 6 wk in the diet [0.02%, wt/wt)] to rats with streptozotocin-induced diabetes. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, transcription factors nuclear factor-kappaB and activator protein-1, and profibrogenic growth factors (connective tissue growth factor and TGFbeta1) were determined in the left ventricle of treated and untreated streptozotocin-diabetic rats. Structural and ultrastructural changes, and the contractile force developed by electrically driven papillary muscles, under basal conditions and after stimulation with isoproterenol, were also evaluated. Oxidative stress induced by hyperglycemia increased AGEs and AGE receptors and triggered a cascade of signaling, eventually leading to interstitial fibrosis. DHEA treatment, by improving oxidative balance, counteracted the enhanced AGE receptor activation and increase of profibrogenic factors and restored tissue levels of collagen I, collagen IV, and fibronectin to those of control animals. Moreover, DHEA completely restored the contractility of isolated papillary muscle. Oxidative stress led to cardiac fibrosis, the most important pathogenetic factor of the heart's impaired functional integrity in diabetes. Structural and ultrastructural changes and impairment of muscle function induced by experimental diabetes were minimized by DHEA treatment.
Although the pathogenesis of sporadic Alzheimer disease (AD) is not clearly understood, it is likely dependent on several age-related factors. Diabetes is a risk factor for AD, and multiple mechanisms connecting the 2 diseases have been proposed. Hyperglycemia enhances the formation of advanced glycation end products (AGEs) that result from the auto-oxidation of glucose and fructose. The interaction of AGEs with their receptor, named RAGE, elicits the formation of reactive oxygen species that are also believed to be an early event in AD pathology. To investigate a functional link between the disorders diabetes and AD, the effect of 2 AGEs, pentosidine and glyceraldehydes-derived pyridinium (GLAP), was studied on BACE1 expression both in vivo, in streptozotocin treated rats, and in vitro in differentiated neuroblastoma cells. We showed that pentosidine and GLAP were able to upregulate BACE1 expression through their binding with RAGE and the consequent activation of NF-κB. In addition, both pentosidine and GLAP were found to be increased in the brain in sporadic AD patients. Our findings demonstrate that activation of the AGEs/RAGE axis, by upregulating the key enzyme for amyloid-β production, provides a pathologic link between diabetes mellitus and AD.
Oxidative stress plays a key role in the pathogenesis of diabetic cardiomyopathy, which is characterized by myocyte loss and fibrosis, finally resulting in heart failure. The study looked at the downstream signaling whereby oxidative stress leads to reduced myocardial contractility in the left ventricle of diabetic rats and the effects of dehydroepiandrosterone (DHEA), which production is suppressed in the failing heart and prevents the oxidative damage induced by hyperglycemia in several experimental models. DHEA was given orally at a dose of 4 mg/rat per day for 21 d to rats with streptozotocin (STZ)-induced diabetes and genetic diabetic-fatty (ZDF) rats. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, cardiac myogenic factors, and myosin heavy-chain gene expression were determined in the left ventricle of treated and untreated STZ-diabetic rats and ZDF rats. Oxidative stress induced by chronic hyperglycemia increased AGE and AGE receptors and led to activation of the pleoitropic transcription factor nuclear factor-kappaB. Nuclear factor-kappaB activation triggered a cascade of signaling, which finally led to the switch in the cardiac myosin heavy-chain (MHC) gene expression from the alpha-MHC isoform to the beta-MHC isoform. DHEA treatment, by preventing the activation of the oxidative pathways induced by hyperglycemia, counteracted the enhanced AGE receptor activation in the heart of STZ-diabetic rats and ZDF rats and normalized downstream signaling, thus avoiding impairment of the cardiac myogenic factors, heart autonomic nervous system and neural crest derivatives (HAND) and myogenic enhancer factor-2, and the switch in MHC gene expression, which are the early events in diabetic cardiomyopathy.
PUFA from fish oil appear to have anti-inflammatory and anti-oxidative effects and improve nutritional status in cancer patients. With this as background, the aim of the present study was to investigate the effect of EPA plus DHA on inflammatory condition, and oxidative and nutritional status in patients with lung cancer. In our multicentre, randomised, double-blind trial, thirty-three patients with a diagnosis of advanced inoperable non-small-cell lung cancer and undergoing chemotherapy were divided into two groups, receiving four capsules/d containing 510 mg of EPA and 340 mg of DHA, or 850 mg of placebo, for 66 d. At the start of chemotherapy (T 0 ), after 8 d (T 1 ), 22 d (T 2 ) and 66 d (T 3 ), biochemical (inflammatory and oxidative status parameters) and anthropometric parameters were measured in both groups. A significant increase of body weight in the n-3 group at T 3 v. T 0 was observed. Concerning inflammation, C-reactive protein and IL-6 levels differed significantly between the n-3 and placebo groups at T 3 , and progressively decreased during chemotherapy in the n-3 group, evidencing n-3 PUFA anti-inflammatory action. Concerning oxidative status, plasma reactive oxygen species levels increased in the placebo group v. the n-3 group at the later treatment times. Hydroxynonenal levels increased in the placebo group during the study, while they stabilised in the n-3 group. Our data confirm that the continual assumption of EPA plus DHA determined an anti-inflammatory and anti-oxidative action which could be considered a preliminary goal in anti-cachectic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.