Targeted drugs are effective when directly inhibiting strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, we here describe the ALK inhibitor ceritinib to have activity across several ALK-negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the non-canonical targets IGF1R, FAK1 and RSK1/2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, ceritinib combination with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multi-kinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.
Proper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter- molecular interactions known as the +TIP network. Hypotheses addressing the purpose of +TIP:+TIP interactions include relieving +TIP autoinhibition and localizing MT regulators to growing MT ends. In addition, we have proposed that the web of +TIP:+TIP interactions has a physical purpose: creating a dynamic scaffold that constrains the structural fluctuations of the fragile MT tip and thus acts as a polymerization chaperone. Here we examine the possibility that this proposed scaffold is a biomolecular condensate (i.e., liquid droplet). Many animal +TIP network proteins are multivalent and have intrinsically disordered regions, features commonly found in biomolecular condensates. Moreover, previous studies have shown that overexpression of the +TIP CLIP-170 induces large “patch” structures containing CLIP-170 and other +TIPs; we hypothesized that these structures might be biomolecular condensates. To test this hypothesis, we used video microscopy, immunofluorescence staining, and Fluorescence Recovery After Photobleaching (FRAP). Our data show that the CLIP-170-induced patches have hallmarks indicative of a biomolecular condensate, one that contains +TIP proteins and excludes other known condensate markers. Moreover, bioinformatic studies demonstrate that the presence of intrinsically disordered regions is conserved in key +TIPs, implying that these regions are functionally significant. Together, these results indicate that the CLIP-170 induced patches in cells are phase-separated liquid condensates and raise the possibility that the endogenous +TIP network might form a liquid droplet at MT ends or other +TIP locations.
Proper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter-molecular interactions known as the +TIP network. Hypotheses addressing the purpose of +TIP:+TIP interactions include relieving +TIP autoinhibition and localizing MT regulators to growing MT ends. In addition, we have proposed that the web of +TIP:+TIP interactions has a physical purpose, creating a superstructure that constrains the structural fluctuations of the fragile MT tip and thus acts as a polymerization chaperone. Many animal +TIP network proteins are multivalent and have intrinsically disordered regions, features commonly found in biomolecular condensates. This observation suggests that the +TIP network might under some conditions form a biomolecular condensate. Previous studies have shown that overexpression of the +TIP CLIP-170 induces large “patch” structures containing CLIP-170 and other +TIPs. To test the hypothesis that these patches might be biomolecular condensates, we used video microscopy, immunofluorescence staining, and Fluorescence Recovery After Photobleaching (FRAP). Our data show that the CLIP-170-induced patches have hallmarks indicative of a biomolecular condensate, one that contains +TIP proteins and excludes other known condensate markers. Moreover, bioinformatic studies demonstrate that the presence of intrinsically disordered regions is conserved in key +TIPs, implying that these regions are functionally significant. Together, these results indicate that the CLIP-170 induced patches in cells are phase-separated liquid condensates and raise the possibility that the endogenous +TIP network might form a liquid droplet at MT ends or other +TIP locations.
Although the BRAF inhibitors dabrafenib and vemurafenib have both proven successful against BRAF‐mutant melanoma, there seem to be differences in their mechanisms of action. Here, we show that dabrafenib is more effective at inhibiting the growth of NRAS‐mutant and KRAS‐mutant cancer cell lines than vemurafenib. Using mass spectrometry‐based chemical proteomics, we identified NEK9 and CDK16 as unique targets of dabrafenib. Both NEK9 and CDK16 were highly expressed in specimens of advanced melanoma, with high expression of both proteins correlating with a worse overall survival. A role for NEK9 in the growth of NRAS‐ and KRAS‐mutant cell lines was suggested by siRNA studies in which silencing was associated with decreased proliferation, cell cycle arrest associated with increased p21 expression, inhibition of phospho‐CHK1, decreased CDK4 expression, and the initiation of a senescence response. Inhibition of CDK4 but not CHK1 recapitulated the effects of NEK9 silencing, indicating this to be the likely mechanism of growth inhibition. We next turned our attention to CDK16 and found that its knockdown inhibited the phosphorylation of the Rb protein at S780 and increased expression of p27. Both of these effects were phenocopied in NRAS‐ and KRAS‐mutant cancer cells by dabrafenib, but not vemurafenib. Combined silencing of NEK9 and CDK16 was associated with enhanced inhibition of melanoma cell proliferation. In summary, we have identified dabrafenib as a potent inhibitor of NEK9 and CDK16, and our studies suggest that inhibition of these kinases may have activity against cancers that do not harbor BRAF mutations.
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are often linked to drug resistance. Here, we found that coculture with CAFs or culture in CAF-conditioned medium unexpectedly induced drug sensitivity in certain lung cancer cell lines. Gene expression and secretome analyses of CAFs and normal lung–associated fibroblasts (NAFs) revealed differential abundance of insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), which promoted or inhibited, respectively, signaling by the receptor IGF1R and the kinase FAK. Similar drug sensitization was seen in gefitinib-resistant, EGFR -mutant PC9GR lung cancer cells treated with recombinant IGFBPs. Conversely, drug sensitivity was decreased by recombinant IGFs or conditioned medium from CAFs in which IGFBP5 or IGFBP6 was silenced. Phosphoproteomics and receptor tyrosine kinase (RTK) array analyses indicated that exposure of PC9GR cells to CAF-conditioned medium also inhibited compensatory IGF1R and FAK signaling induced by the EGFR inhibitor osimertinib. Combined small-molecule inhibition of IGF1R and FAK phenocopied the CAF-mediated effects in culture and increased the antitumor effect of osimertinib in mice. Cells that were osimertinib resistant and had MET amplification or showed epithelial-to-mesenchymal transition also displayed residual sensitivity to IGFBPs. Thus, CAFs promote or reduce drug resistance in a context-dependent manner, and deciphering the relationship between the differential content of CAF secretomes and the signaling dependencies of the tumor may reveal effective combination treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.