African Americans (AAs) have higher mortality rate from breast cancer than that of Caucasian Americans (CAs) even when socioeconomic factors are accounted for. To better understand the driving biological factors of this health disparity, we performed a comprehensive differential gene expression analysis, including subtype- and stage-specific analysis, using the breast cancer data in the Cancer Genome Atlas (TCGA). In total, 674 unique genes and other transcripts were found differentially expressed between these two populations. The numbers of differentially expressed genes between AA and CA patients increased in each stage of tumor progression: there were 26 in stage I, 161 in stage II, and 223 in stage III. Resistin, a gene that is linked to obesity, insulin resistance, and breast cancer, was expressed more than four times higher in AA tumors. An uncharacterized, long, non-coding RNA, LOC90784, was down-regulated in AA tumors, and its expression was inversely related to cancer stage and was the lowest in triple negative AA breast tumors. Network analysis showed increased expression of a majority of components in p53 and BRCA1 subnetworks in AA breast tumor samples, and members of the aurora B and polo-like kinase signaling pathways were also highly expressed. Higher gene expression diversity was observed in more advanced stage breast tumors suggesting increased genomic instability during tumor progression. Amplified resistin expression may indicate insulin-resistant type II diabetes and obesity are associated with AA breast cancer. Expression of LOC90784 may have a protective effect on breast cancer patients, and its loss, particularly in triple negative breast cancer, could be having detrimental effects. This work helps elucidate molecular mechanisms of breast cancer health disparity and identifies putative biomarkers and therapeutic targets such as resistin, and the aurora B and polo-like kinase signaling pathways for treating AA breast cancer patients.
How genomic and transcriptomic alterations affect the functional proteome in lung cancer is not fully understood. Here, we integrate DNA copy number, somatic mutations, RNA-sequencing, and expression proteomics in a cohort of 108 squamous cell lung cancer (SCC) patients. We identify three proteomic subtypes, two of which (Inflamed, Redox) comprise 87% of tumors. The Inflamed subtype is enriched with neutrophils, B-cells, and monocytes and expresses more PD-1 . Redox tumours are enriched for oxidation-reduction and glutathione pathways and harbor more NFE2L2/KEAP1 alterations and copy gain in the 3q2 locus. Proteomic subtypes are not associated with patient survival. However, B-cell-rich tertiary lymph node structures, more common in Inflamed, are associated with better survival. We identify metabolic vulnerabilities ( TP63 , PSAT1 , and TFRC ) in Redox. Our work provides a powerful resource for lung SCC biology and suggests therapeutic opportunities based on redox metabolism and immune cell infiltrates.
The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.
Targeted drugs are effective when directly inhibiting strong disease drivers, but only a small fraction of diseases feature defined actionable drivers. Alternatively, network-based approaches can uncover new therapeutic opportunities. Applying an integrated phenotypic screening, chemical and phosphoproteomics strategy, we here describe the ALK inhibitor ceritinib to have activity across several ALK-negative lung cancer cell lines and identify new targets and network-wide signaling effects. Combining pharmacological inhibitors and RNA interference revealed a polypharmacology mechanism involving the non-canonical targets IGF1R, FAK1 and RSK1/2. Mutating the downstream signaling hub YB1 protected cells from ceritinib. Consistent with YB1 signaling being known to cause taxol resistance, ceritinib combination with paclitaxel displayed strong synergy, particularly in cells expressing high FAK autophosphorylation, which we show to be prevalent in lung cancer. Together, we present a systems chemical biology platform for elucidating multi-kinase inhibitor polypharmacology mechanisms, subsequent design of synergistic drug combinations, and identification of mechanistic biomarker candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.