Mammogram images have the ability to assist physicians in detecting breast cancer caused by cells abnormal growth. But due to visual interpretation, false results can be obtained. In this paper, to reduce false results, image segmentation is carried out to find breast cancer mass. Image segmentation using Fuzzy clustering: K means, FCM, and FPCM shows result better than other existing methods but initialization problem and sensitivity to noise do not make them to achieve better accuracy. Various extension of the FCM for segmentation is developed. But most of them modify the objective function which changes the basic FCM algorithm. Hence efforts have been made to develop FCM algorithm without modifying objective function for better segmentation. We have proposed a technique GA-ACO-FCM, which is the hybridization of optimization tools: genetic algorithm and ant colony optimization with fuzzy C means .GA-ACO-FCM is suitable to overcome initialization problem of FCM and shows better results with achieving high accuracy.
<p class="Abstract">This paper presents three different hybrid classification techniques applied for the first time in real-time online fingerprint classification. Classification of online real time fingerprints is a complex task as it involves adaptation and tuning of classifier parameters for better classification accuracy. To accomplish the optimal adaptation of parameters of functional link artificial neural network (FLANN) for real-time online fingerprint classification, proven and established optimizers, such as Biogeography based optimizer (BBO), Genetic algorithm (GA), and Particle swarm optimizer (PSO) are intelligently infused with it to form hybrid classifiers. The global features of the real-time fingerprints are extracted using a Gabor filter-bank and then passed into adaptive hybrid classifiers for the desired classification as per the Henry system. Three hybrid classifiers, the optimized weight adapted Biogeography based optimized functional link artificial neural network (BBO-FLANN), Genetic algorithm based functional link artificial neural network (GA-FLANN) and Particle swarm optimized functional link artificial neural network (PSO-FLANN), are explored for real-time online fingerprint classification, where the PSO-FLANN technique is showing superior performance as compared to GA-FLANN and BBO-FLANN techniques. The best accuracy observed by the application of PSO-FLANN, is 98% for real-time online fingerprint classification.</p>
In the modern world, Tuberculosis (TB) is regarded as a serious health issue with a high rate of mortality. TB can be cured completely by early diagnosis. For achieving this, one tool utilized is CXR (Chest X-rays) which is used to screen active TB. An enhanced deep learning (DL) model is implemented for automatic Tuberculosis detection. This work undergoes the phases like preprocessing, segmentation, feature extraction, and optimized classification. Initially, the CXR image is preprocessed and segmented using AFCM (Adaptive Fuzzy C means) clustering. Then, feature extraction and several features are extracted. Finally, these features are given to the DL classifier Deep Belief Network (DBN). To improve the classification accuracy and to optimize the DBN, a metaheuristic optimization Adaptive Monarch butterfly optimization (AMBO) algorithm is used. Here, the Deep Belief Network with Adaptive Monarch butterfly optimization (DBN-AMBO) is used for enhancing the accuracy, reducing the error function, and optimizing weighting parameters. The overall implementation is carried out on the Python platform. The overall performance evaluations of the DBN-AMBO were carried out on MC and SC datasets and compared over the other approaches on the basis of certain metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.