In the modern world, Tuberculosis (TB) is regarded as a serious health issue with a high rate of mortality. TB can be cured completely by early diagnosis. For achieving this, one tool utilized is CXR (Chest X-rays) which is used to screen active TB. An enhanced deep learning (DL) model is implemented for automatic Tuberculosis detection. This work undergoes the phases like preprocessing, segmentation, feature extraction, and optimized classification. Initially, the CXR image is preprocessed and segmented using AFCM (Adaptive Fuzzy C means) clustering. Then, feature extraction and several features are extracted. Finally, these features are given to the DL classifier Deep Belief Network (DBN). To improve the classification accuracy and to optimize the DBN, a metaheuristic optimization Adaptive Monarch butterfly optimization (AMBO) algorithm is used. Here, the Deep Belief Network with Adaptive Monarch butterfly optimization (DBN-AMBO) is used for enhancing the accuracy, reducing the error function, and optimizing weighting parameters. The overall implementation is carried out on the Python platform. The overall performance evaluations of the DBN-AMBO were carried out on MC and SC datasets and compared over the other approaches on the basis of certain metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.