Abstract:Polymers are key building blocks in the development of smart materials for biomedical applications, and many polymers offer unique properties for specific applications. A wide range of materials is available through the use of polymer compounds. These compounds can incorporate performance-enhancing fillers, which provide properties not reachable with ordinary neat polymers (e.g., bending stiffness, tensile strength, elongation, torque, biological activity such as antimicrobial properties, cell differentiation). In this work, the preparation of functional biocomposites containing organic modified zirconium phosphate (ZrP) as drug carrier is presented. The composites were prepared by melt compounding, which offers significant promise since it allows an easy customization of the plastic compounds that well suit biomedical applications (devices, long-term implantable polymers, bioresorbable polymers). The obtained polymer composites based on ZrP intercalated with gentamicin (GMT) and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) were characterized.
Bioactive ingredients from natural sources possess well-known positive effects in cosmetic applications. Among them, phenolic acids have emerged with very interesting potential. Caffeic acid (CAF) is one of the most promising active compounds because it possess antioxidant, anti-inflammatory, antitumoral and anti-wrinkle effects. In order to increase its local bioavailability in topical applications, the vehiculation of caffeic acid can lead to a new raw material of cosmetic interest. For this purpose, clay minerals possess excellent properties, such as low or null toxicity and good biocompatibility. Clays are able to host a wide range of active ingredients in the interlayer region, using a green process known as intercalation reaction. The hosting of cosmetic actives into the layered structure of anionic clays allows the preparation of new materials with enhanced stability towards oxidation and photodegradation, better local bioavailability, and easier workability. In this paper, the successful vehiculation of caffeic acid into anionic clay is presented. The obtained hybrid is very promising for the cosmetic market because of its higher bioavailability and prolonged antioxidant activity.
Ascorbic acid or vitamin C is a strong antioxidant widely used in cosmetic and food fields. This vitamin is very unstable and rapidly undergoes degradation. In order to solve this problem and to obtain a stable ascorbic acid, Nikkol Group has developed ascorbyltetraisopalmitate (VC-IP). This raw material is an oil phase, already well-known and employed in the cosmetic market. The objective of this study is to obtain VC-IP in micro-powder form, in order to produce a new raw material that is easily dispersible in oil and water phases and useful for make-up and color cosmetic applications. Various types of drug carriers were studied and considered in order to support VC-IP and obtain the conversion in powder. Υ-cyclodextrin and mesoporous silica SBA-15 were chosen as the best candidates. A white powder of supported VC-IP was obtained with each carrier (VC-IP@cyclodextrin, VC-IP@SBA-15). The systems underwent physicochemical characterization and in vitro release tests were carried out. Based on the conducted study, it can be concluded that by supporting VC-IP on Υ-cyclodextrin and SBA-15, it is feasible to obtain a new raw material in powder form. The two carriers possess different release profiles, adding the possibility to finely tune the release of the active component in smart formulations.
Zirconium phosphate is able to intercalate basic molecules and it is an effective drug carrier that can be used to project slow release for topical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.