Introduction: Magnetic Resonance Imaging is a sensitive technique for detecting white matter (WM) MS lesions, but the relation with clinical disability is low. Because of this, changes in both ‘normal appearing white matter’ (NAWM) and ‘diffusely abnormal white matter’ (DAWM) have been of interest in recent years. MR techniques, including quantitative magnetic resonance imaging (qMRI) and quantitative magnetic resonance spectroscopy (qMRS), have been developed in order to detect and quantify such changes. In this study, qMRI and qMRS were used to investigate NAWM and DAWM in typical MS patients and in MS patients with low number of WM lesions. Patient data were compared to ‘normal white matter’ (NWM) in healthy controls. Methods: QMRI and qMRS measurements were performed on a 1.5 T Philips MR-scanner. 35 patients with clinically definite MS and 20 healthy controls were included. Twenty of the patients fulfilled the ‘Barkhof-Tintoré criteria’ for MS, (‘MRIpos’), whereas 15 showed radiologically atypical findings with few WM lesions (‘MRIneg’). QMRI properties were determined in ROIs of NAWM, DAWM and lesions in the MS groups and of NWM in controls. Descriptive statistical analysis and comparisons were performed. Correlations were calculated between qMRI measurements and (1) clinical parameters and (2) WM metabolite concentrations. Regression analyses were performed with brain parenchyma fraction and MSSS. Results: NAWM in the MRIneg group was significantly different from NAWM in the MRIpos group and NWM. In addition, R1 and R2 of NAWM in the MRIpos group correlated negatively with EDSS and MSSS. DAWM was significantly different from NWM, but similar in the MS groups. N-acetyl aspartate correlated negatively with R1 and R2 in MRIneg. R2 of DAWM was associated with BPF. Conclusions: Changes in NAWM and DAWM are independent pathological entities in the disease. The correlation between qMRI and clinical status may shed new light on the clinicoradiological paradox.
In Multiple Sclerosis (MS) the relationship between disease process in normal-appearing white matter (NAWM) and the development of white matter lesions is not well understood. In this study we used single voxel proton ‘Quantitative Magnetic Resonance Spectroscopy’ (qMRS) to characterize the NAWM and thalamus both in atypical ‘Clinically Definite MS’ (CDMS) patients, MRIneg (N = 15) with very few lesions (two or fewer lesions), and in typical CDMS patients, MRIpos (N = 20) with lesions, in comparison with healthy control subjects (N = 20). In addition, the metabolite concentrations were also correlated with extent of brain atrophy measured using Brain Parenchymal Fraction (BPF) and severity of the disease measured using ‘Multiple Sclerosis Severity Score’ (MSSS). Elevated concentrations of glutamate and glutamine (Glx) were observed in both MS groups (MRIneg 8.12 mM, p<0.001 and MRIpos 7.96 mM p<0.001) compared to controls, 6.76 mM. Linear regressions of Glx and total creatine (tCr) with MSSS were 0.16±0.06 mM/MSSS (p = 0.02) for Glx and 0.06±0.03 mM/MSSS (p = 0.04) for tCr, respectively. Moreover, linear regressions of tCr and myo-Inositol (mIns) with BPF were −6.22±1.63 mM/BPF (p<0.001) for tCr and −7.71±2.43 mM/BPF (p = 0.003) for mIns. Furthermore, the MRIpos patients had lower N-acetylaspartate and N-acetylaspartate-glutamate (tNA) and elevated mIns concentrations in NAWM compared to both controls (tNA: p = 0.04 mIns p<0.001) and MRIneg (tNA: p = 0.03 , mIns: p = 0.002). The results suggest that Glx may be an important marker for pathology in non-lesional white matter in MS. Moreover, Glx is related to the severity of MS independent of number of lesions in the patient. In contrast, increased glial density indicated by increased mIns and decreased neuronal density indicated by the decreased tNA, were only observed in NAWM of typical CDMS patients with white matter lesions.
A number of MRI findings were detected in patients with chronic NB, although the findings were unspecific when compared with matched controls and did not correlate with disease duration. However, subependymal lesions may constitute a potential finding in chronic NB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.