A method is presented for rapid simultaneous quantification of the longitudinal T 1 relaxation, the transverse T 2 relaxation, the proton density (PD), and the amplitude of the local radio frequency B 1 field. All four parameters are measured in one single scan by means of a multislice, multiecho, and multidelay acquisition. It is based on a previously reported method, which was substantially improved for routine clinical usage. The improvements comprise of the use of a multislice spin-echo technique, a background phase correction, and a spin system simulation to compensate for the slice-selective RF pulse profile effects. The aim of the optimization was to achieve the optimal result for the quantification of magnetic resonance parameters within a clinically acceptable time. One benchmark was high-resolution coverage of the brain within 5 min. In this scan time the measured intersubject standard deviation (SD) in a group of volunteers was 2% to 8%, depending on the tissue (voxel size ؍ 0.8 ؋ 0.8 ؋ 5 mm). As an example, the method was applied to a patient with multiple sclerosis in whom the diseased tissue could clearly be distinguished from healthy reference values. Additionally it was shown that, using the approach of synthetic MRI, both accurate conventional contrast images as well as quantification maps can be generated based on the same scan. Tissues in the human body can be distinguished with magnetic resonance imaging (MRI) depending on their MR parameters, such as the longitudinal T 1 relaxation, the transverse T 2 relaxation, and the proton density (PD). In clinical routine, the MR scanner settings, such as echo time (T E ), repetition time (T R ), and flip angle (␣), are most often chosen to highlight, or saturate, the image intensity of tissues, resulting in T 1 -weighting or T 2 -weighting in a contrast image. These procedures are well-established and relatively quick. A major disadvantage of using such contrast images is that the absolute intensity has no direct meaning and diagnosis relies on comparison with surrounding tissues in the image. In many cases it is therefore necessary to perform several different contrast scans. A more direct approach is the absolute quantification of the tissue parameters T 1 , T 2 , and PD. In this case, pathology can be examined on a pixel basis to establish the absolute deviation compared to the normal values. Automatic segmentation of such tissue images would be straightforward and the progress of the disease could then be expressed in absolute numbers. An excellent overview of the use of absolute quantification on neurodegenerative diseases is provided in Ref. 1.Although the advantages of absolute quantification are obvious, its clinical use is still limited. At least two major hurdles need to be addressed to stimulate widespread clinical usage. For many methods, the excessive scan time associated with the measurement of the three parameters has so far prohibited its clinical application. However, in recent years there has been substantial progress (see, e.g., R...
Based on the seminal observation by Cannon and Nedergaard 1 that human PET scans sometimes depicted a symmetric cold induced uptake of FDG-glucose, three independent studies, published in April 2009, demonstrated metabolically highly active brown adipose tissue (BAT) in adult humans [2][3][4] . Subsequent investigations demonstrated an inverse association of obesity and type 2 diabetes mellitus and the presence of active BAT [5][6][7] . A unique characteristic of BAT is the expression of uncoupling protein 1 (UCP1, also known as thermogenin). Activation of this transmembrane protein by fatty acids in response to adrenergic signaling short-circuits the inner mitochondrial membrane's proton gradient thereby uncoupling oxidative phosphorylation from ATP synthesis. Hence, chemical energy stored in the gradient is dissipated as heat allowing for efficient direct thermogenesis without shivering 8 . This adaptive defense against cold has been examined extensively in rodents and many aspects of BAT development and function have been elucidated. In rodents it is evident 3 that not only the distinct thermogenic BAT organ located in the interscapular region (iBAT) consists of brown adipocytes, but that a second type of brown adipocytes, so-called beige or brite cells can appear in white adipose tissue (WAT) depots in response to cold or 3-adrenergic stimuli 9,10 . Recently, lineage tracing experiments revealed that the two cell types have a different developmental origin 11 . While classical brown adipocytes and skeletal muscle cells arise from precursors in the dermomyotome 12 , beige/brite cells seem to originate from endothelial and perivascular cells within WAT depots [13][14][15] . A recent study by Wu et al suggests that the previously described depots of human BAT are of the beige/brite type and raises the question whether humans altogether lack classical brown adipocytes 16 , this has also been the topic of a recent review 17 . Histomorphological studies performed in the 1970s indicated the existence of brown adipocytes within the interscapular region in human infants and that these disappeared with age 18 . Using a combination of high resolution imaging techniques and morphological and biochemical analyses, we tested the hypothesis that human infants, like small mammals, possess an anatomically distinguishable iBAT depot consisting of classical brown adipocytes, a cell type so far not proven to exist in humans.In an attempt to visualize potential iBAT in humans we performed post mortem MR imaging of eight human infants. Using the fat fraction method 19 we did not only identify BAT depots in the supraclavicular region, but importantly also a fat depot in the interscapular region presenting with an intermediate fat fraction as opposed to the high fat fraction of the surrounding subcutaneous WAT (Supplementary Fig. 1). Using a three dimensional reconstruction we were able to compute the volume of the tissue depot with an average (±SD) volume of 3.6±2.4 ml. Figure 1 displays a representative reconstruction of the iBAT...
This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative MRI. Earlier published studies of this method are summarized, and a previously unpublished validation study, based on 4753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy X-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRIs show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 and 4.6 per cent for fat (computed from AT) and LT, respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of >20 per cent. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat, in combination with rapid scanning protocols and efficient image analysis tools, makes quantitative MRI a powerful tool for advanced body composition assessment.
The method accurately quantified the whole-body skeletal muscle volume and the volume of separate muscle groups independent of field strength and image resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.