Based on the seminal observation by Cannon and Nedergaard 1 that human PET scans sometimes depicted a symmetric cold induced uptake of FDG-glucose, three independent studies, published in April 2009, demonstrated metabolically highly active brown adipose tissue (BAT) in adult humans [2][3][4] . Subsequent investigations demonstrated an inverse association of obesity and type 2 diabetes mellitus and the presence of active BAT [5][6][7] . A unique characteristic of BAT is the expression of uncoupling protein 1 (UCP1, also known as thermogenin). Activation of this transmembrane protein by fatty acids in response to adrenergic signaling short-circuits the inner mitochondrial membrane's proton gradient thereby uncoupling oxidative phosphorylation from ATP synthesis. Hence, chemical energy stored in the gradient is dissipated as heat allowing for efficient direct thermogenesis without shivering 8 . This adaptive defense against cold has been examined extensively in rodents and many aspects of BAT development and function have been elucidated. In rodents it is evident 3 that not only the distinct thermogenic BAT organ located in the interscapular region (iBAT) consists of brown adipocytes, but that a second type of brown adipocytes, so-called beige or brite cells can appear in white adipose tissue (WAT) depots in response to cold or 3-adrenergic stimuli 9,10 . Recently, lineage tracing experiments revealed that the two cell types have a different developmental origin 11 . While classical brown adipocytes and skeletal muscle cells arise from precursors in the dermomyotome 12 , beige/brite cells seem to originate from endothelial and perivascular cells within WAT depots [13][14][15] . A recent study by Wu et al suggests that the previously described depots of human BAT are of the beige/brite type and raises the question whether humans altogether lack classical brown adipocytes 16 , this has also been the topic of a recent review 17 . Histomorphological studies performed in the 1970s indicated the existence of brown adipocytes within the interscapular region in human infants and that these disappeared with age 18 . Using a combination of high resolution imaging techniques and morphological and biochemical analyses, we tested the hypothesis that human infants, like small mammals, possess an anatomically distinguishable iBAT depot consisting of classical brown adipocytes, a cell type so far not proven to exist in humans.In an attempt to visualize potential iBAT in humans we performed post mortem MR imaging of eight human infants. Using the fat fraction method 19 we did not only identify BAT depots in the supraclavicular region, but importantly also a fat depot in the interscapular region presenting with an intermediate fat fraction as opposed to the high fat fraction of the surrounding subcutaneous WAT (Supplementary Fig. 1). Using a three dimensional reconstruction we were able to compute the volume of the tissue depot with an average (±SD) volume of 3.6±2.4 ml. Figure 1 displays a representative reconstruction of the iBAT...
Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT therapies based on cold exposure or β-adrenergic agonists are clinically not feasible, alternative strategies must be explored. Purinergic co-transmission might be involved in sympathetic control of BAT and previous studies reported inhibitory effects of the purinergic transmitter adenosine in BAT from hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A receptor is the most abundant adenosine receptor in human and murine BAT. Pharmacological blockade or genetic loss of A2A receptors in mice causes a decrease in BAT-dependent thermogenesis, whereas treatment with A2A agonists significantly increases energy expenditure. Moreover, pharmacological stimulation of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies.
Brown fat is emerging as an interesting and promising target for therapeutic intervention in obesity and metabolic disease. Activation of brown fat in humans is associated with marked improvement in metabolic parameters such as levels of free fatty acids and insulin sensitivity. Skeletal muscle is another important organ for thermogenesis, with the capacity to induce energy-consuming futile cycles. In this Review, we focus on how these two major thermogenic organs - brown fat and muscle - act and cooperate to maintain normal body temperature. Moreover, in the light of disease-relevant mechanisms, we explore the molecular pathways that regulate thermogenesis in brown fat and muscle. Brown adipocytes possess a unique cellular mechanism to convert chemical energy into heat: uncoupling protein 1 (UCP1), which can short-circuit the mitochondrial proton gradient. However, recent research demonstrates the existence of several other energy-expending 'futile' cycles in both adipocytes and muscle, such as creatine and calcium cycling. These mechanisms can complement or even substitute for UCP1-mediated thermogenesis. Moreover, they expand our view of cold-induced thermogenesis from a special feature of brown adipocytes to a more general physiological principle. Finally, we discuss how thermogenic mechanisms can be exploited to expend energy and hence offer new therapeutic opportunities.
Brown adipose tissue (BAT) is a unique tissue that is able to convert chemical energy directly into heat when activated by the sympathetic nervous system. While initially believed to be of relevance only in human newborns and infants, research during recent years provided unequivocal evidence of active BAT in human adults. Moreover, it has become clear that BAT plays an important role in insulin sensitivity in rodents and humans. This has opened the possibility for exciting new therapies for obesity and diabetes. This review summarizes the current state of research with a special focus on recent advances regarding BAT and insulin resistance in human adults. Additionally, we provide an outlook on possible future therapeutic uses of BAT in the treatment of obesity and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.