The term "exposome" describes the totality of exposures to which an individual is subjected from conception to death. It includes both external and internal factors as well as the human body's response to these factors. Current exposome research aims to understand the effects all factors have on specific organs, yet today, the exposome of human skin has not received major attention and a corresponding definition is lacking. This review was compiled with the collaboration of European scientists, specialized in either environmental medicine or skin biology. A comprehensive review of the existing literature was performed using PubMed. The search was restricted to exposome factors and skin aging. Key review papers and all relevant, epidemiological, in vitro, ex vivo and clinical studies were analyzed to determine the key elements of the exposome influencing skin aging. Here we propose a definition of the skin aging exposome. It is based on a summary of the existing scientific evidence for the role of exposome factors in skin aging. We also identify future research needs which concern knowledge about the interaction of distinct exposomal factors with each other and the resulting net effects on skin aging and suggest some protective measures.
Stromal-cell derived factor or SDF-1 is a CXC chemokine constitutively expressed by stromal bone marrow cell cultures that binds to the G-protein-coupled receptor CXCR4. SDF-1/CXCR4 represents a unique, nonpromiscuous ligand/receptor pair that plays an essential role in prenatal myelo- and lymphopoiesis as well as in cardiovascular and neural development. SDF-1 prevents entry of CXCR4-dependent (X4) HIV viruses in T lymphocytes, by binding and internalizing CXCR4. The expression pattern of SDF-1 protein in normal tissues is not known. Here we describe an analysis of SDF-1 mRNA and protein in normal and inflamed skin by in situ hybridization and immunohistochemistry, using a novel anti-SDF-1 monoclonal antibody. We also describe the expression pattern of CXCR4 receptor by immunohistochemistry. Our results show that SDF-1 protein and mRNA are normally expressed by endothelial cells, pericytes, and either resident or explanted CD1a+ dendritic cells. Epithelial cells of sweat glands but not keratinocytes also express SDF-1. In various inflammatory skin diseases, a large number of mononuclear cells and fibroblasts in close contact with CXCR4-positive lymphocytic infiltrates also express SDF-1. CXCR4 was also detected in many different normal cell types, including endothelial and epithelial cells, which points to a role for SDF-1/CXCR4 cell signaling in vascular and epithelial homeostasis. The demonstration of SDF-1 expression in dendritic and endothelial cells provides new insights into the mechanisms of normal and pathological lymphocyte circulation and makes it possible to envisage a role for locally secreted SDF-1 in the selective incapacity of mucosal dendritic cells to support and propagate infection by X4 HIV isolates.
Background Acne vulgaris is one of the main reasons for dermatological consultations. Severity and response to treatment may be impacted by various external factors or exposome.AimTo assess the impact of environmental factors on acne and to provide a comprehensive overview of the acne exposome.MethodsTwo consensus meetings of five European dermatologists and a comprehensive literature search on exposome factors triggering acne served as a basis for this review.ResultsAcne exposome was defined as the sum of all environmental factors influencing the occurrence, duration and severity of acne. Exposome factors impact on the response and the frequency of relapse to treatments by interacting with the skin barrier, sebaceous gland, innate immunity and cutaneous microbiota. They may be classified into the following six main categories: nutrition, psychological and lifestyle factors, occupational factors including cosmetics, as well as pollutants, medication and climatic factors. Moreover, practical considerations for the dermatologist's clinical practice are proposed.ConclusionExposome factors including nutrition, medication, occupational factors, pollutants, climatic factors, and psychosocial and lifestyle factors may impact on the course and severity of acne and on treatment efficacy. Identifying and reducing the impact of exposome is important for an adequate acne disease management.
Genetic immunization is a promising gene therapy approach for the prevention and treatment of infectious disease. Plasmid DNA expressing genes of pathogens is directly introduced into host cells and specific cell-mediated and/or humoral immune responses are elicited against the encoded protein. Leishmaniasis is a significant world-wide health problem for which no vaccine exists. In susceptible animals, such as BALB/c mice, protection from leishmaniasis requires induction of a Thl immune response. In this study, cell-mediated immunity to Leishmania major (L. major) was induced by injecting BALB/c mice intradermally with plasmid DNA expressing the conserved L. major cell surface glycoprotein gp63 (gp63-pcDNA-3). CD4 T lymphocytes from gp63-pcDNA-3-immunized mice proliferated and produced IFN-gamma (but not IL-4) when stimulated in vitro with freeze-thawed parasites, consistent with a Th1 immune response. In contrast, lymphocyte proliferation in animals immunized with freeze-thawed parasites was associated with IL-4 (but not IFN-gamma) production, suggesting a nonprotective Th2 response. Challenge studies revealed that gp63-pcDNA-3 vaccination protected 30% of susceptible mice (21 of 70) from Leishmania infection while neither gp63 protein (0 of 20) nor freeze-thawed parasite vaccines (0 of 50) were efficacious. Dendritic cells derived from skin of gp63-pcDNA-3-injected mice also immunized naive recipients and protected them from leishmaniasis. We conclude that gp63-pcDNA-3 genetic vaccination results in a CD4-dependent Th1 immune response that correlates with protection from disease, and suggest that skin-derived dendritic cells are involved in priming this response.
Severe facial blemishes of any cause have a significant impact on women's QOL, and the effect of these lesions is mediated in part by psychological characteristics related to self-perception and self-presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.