Zinc signals are utilized by several immune cell receptors. One is TLR4, which causes an increase of free zinc ions (Zn2+) that is required for the MyD88-dependent expression of inflammatory cytokines. This study investigates the role of Zn2+ on Toll/IL-1R domain–containing adapter inducing IFN-β (TRIF)–dependent signals, the other major intracellular pathway activated by TLR4. Chelation of Zn2+ with the membrane-permeable chelator N,N,N’,N’-Tetrakis(2-pyridylmethyl)ethylenediamine augmented TLR4-mediated production of IFN-β and subsequent synthesis of inducible NO synthase and production of NO. The effect is based on Zn2+ acting as a negative regulator of the TRIF pathway via reducing IFN regulatory factor 3 activation. This was also observed with TLR3, the only TLR that signals exclusively via TRIF, but not MyD88, and does not trigger a zinc signal. In contrast, IFN-γ–induced NO production was unaffected by N,N,N’,N’-Tetrakis(2-pyridylmethyl)ethylenediamine. Taken together, Zn2+ is specifically involved in TLR signaling, where it differentially regulates MyD88 and TRIF signaling via a zinc signal or via basal Zn2+ levels, respectively.
Free zinc ions (Zn(2+)) participate in several signaling pathways. The aim of the present study was to investigate a potential involvement of Zn(2+) in the PI3K/Akt pathway of interleukin (IL)-2 signaling in T-cells. The IL-2 receptor triggers three major pathways, ERK1/2, JAK/STAT5, and PI3K/Akt. We have previously shown that an IL-2-mediated release of lysosomal Zn(2+) into the cytoplasm activates ERK1/2, but not STAT5. In the present study, Akt phosphorylation in response to IL-2 was abrogated by the Zn(2+) chelator N,N,N',N'-tetrakis-2(pyridyl-methyl)ethylenediamine, and was induced by treatment with Zn(2+) and the ionophore pyrithione. The latter were ineffective in cells that were treated with siRNA against the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that degrades the lipid second messenger PI(3,4,5)P3, which is produced by PI3K and leads to activation of Akt. Inhibition of recombinant PTEN by Zn(2+)in vitro yielded an IC50 of 0.59 nM. Considering a resting free cytoplasmic Zn(2+) level of 0.2 nM in the T-cell line CTLL-2, this seems ideally suited for dynamic regulation by cellular Zn(2+). Oxidation with H2O2 and supplementation with Zn(2+) led to similar changes in the CD spectrum of PTEN. Moreover, Zn(2+) partially prevented the oxidation of cysteines 71 and 124. Hence, we hypothesize that zinc signals affect the IL-2-dependent PI3K/Akt pathway by inhibiting the negative regulator PTEN through binding with a sub-nanomolar affinity to cysteine residues that are essential for its catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.