Background In patients with melanoma, ipilimumab (anti-CTLA-4) prolongs overall survival and nivolumab (anti-PD-1) produced durable tumor regressions in a phase 1 trial. Based on their distinct immunologic mechanisms of action and supportive preclinical data, we conducted a phase 1 trial of nivolumab combined with ipilimumab in advanced melanoma patients. Methods Patients received nivolumab and ipilimumab every 3 weeks for 4 doses, followed by nivolumab alone every 3 weeks for 4 doses (concurrent regimen). Combined treatment was subsequently continued every 12 weeks for up to 8 doses. In a sequenced regimen, patients previously treated with ipilimumab received nivolumab every 2 weeks. Results Fifty-three patients received concurrent nivolumab/ipilimumab and 33 received sequenced treatment. The objective response rate, for all concurrent-regimen patients was 40% (modified WHO criteria). Evidence of clinical activity (conventional, unconfirmed, or immune-related response or stable disease ≥24 weeks) was observed in 65% of patients. At the maximum tolerated dose (1 mg/kg nivolumab + 3 mg/kg ipilimumab), 53% of patients achieved an objective response, all with ≥80% tumor reduction. Grade 3–4 related adverse events occurred in 53% of concurrent-regimen patients, but were qualitatively similar to historical monotherapy experience and were generally reversible. Among sequenced-regimen patients, 18% had grade 3–4 related adverse events and the objective response rate was 20%. Conclusions Concurrent nivolumab/ipilimumab had a manageable safety profile and achieved clinical activity that is distinct from published monotherapy data, with rapid and deep tumor regressions in a substantial number of patients.
Expression of programmed cell death receptor ligand 1 (PD-L1) on tumor cells has been associated with immune escape in human and murine cancers, but little is known regarding the immune regulation of PD-L1 expression by tumor cells and tumor-infiltrating macrophages in dogs. Therefore, 14 canine tumor cell lines, as well as primary cultures of canine monocytes and macrophages, were evaluated for constitutive PD-L1 expression and for responsiveness to immune stimuli. We found that PD-L1 was expressed constitutively on all canine tumor cell lines evaluated, although the levels of basal expression were very variable. Significant upregulation of PD-L1 expression by all tumor cell lines was observed following IFN-γ exposure and by exposure to a TLR3 ligand. Canine monocytes and monocyte-derived macrophages did not express PD-L1 constitutively, but did significantly upregulate expression following treatment with IFN-γ. These findings suggest that most canine tumors express PD-L1 constitutively and that both innate and adaptive immune stimuli can further upregulate PD-L1 expression. Therefore the upregulation of PD-L1 expression by tumor cells and by tumor-infiltrating macrophages in response to cytokines such as IFN-γ may represent an important mechanism of tumor-mediated T-cell suppression in dogs as well as in humans.
The co-inhibitory checkpoint molecule programmed death receptor 1 (PD-1) can trigger T cell functional exhaustion upon binding to its ligand PD-L1 expressed on tumour cells or macrophages. PD-1 blocking antibodies have generated remarkable results in human cancer patients, including inducing durable responses in a number of advanced cancers. Therefore, monoclonal antibodies specific for canine PD-1 were assessed for T cell binding and induction of functional activation. A total of 5-10% of CD4 T cells and 20-25% of CD8 T cells from healthy dogs expressed PD-1, and PD-1 expression was upregulated on T cells from dogs with cancer. Functionally, PD-1 antibodies significantly enhanced T-cell activation, as assessed by proliferation and interferon-gamma (IFN-) production. PD-1 antibodies also reversed T-cell suppression induced by canine soluble PD-L1 and by tumour cells and tumour explant fragments. These findings indicate that PD-1 antibodies have potential for use in cancer immunotherapy in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.