Tumor-associated macrophages (TAMs) express programmed cell death ligand 1 (PD-L1) and contribute to the immune-suppressive tumor microenvironment. Although the role of the PD-L1 and PD-1 interaction to regulate T-cell suppression is established, less is known about PD-L1 signaling in macrophages and how these signals may affect the function of TAMs. We used and models to investigate PD-L1 signaling in macrophages and the effects of PD-L1 antibody treatment on TAM responses. Treatment of mouse and human macrophages with PD-L1 antibodies increased spontaneous macrophage proliferation, survival, and activation (costimulatory molecule expression, cytokine production). Similar changes were observed in macrophages incubated with soluble CD80 and soluble PD-1, and in PD-L1 macrophages. Macrophage treatment with PD-L1 antibodies upregulated mTOR pathway activity, and RNAseq analysis revealed upregulation of multiple macrophage inflammatory pathways. treatment with PD-L1 antibody resulted in increased tumor infiltration with activated macrophages. In tumor-bearing RAG mice, upregulated costimulatory molecule expression by TAMs and reduced tumor growth were observed. Combined PD-1/ PD-L1 antibody treatment of animals with established B16 melanomas cured half of the treated mice, whereas treatment with single antibodies had little therapeutic effect. These findings indicate that PD-L1 delivers a constitutive negative signal to macrophages, resulting in an immune-suppressive cell phenotype. Treatment with PD-L1 antibodies reverses this phenotype and triggers macrophage-mediated antitumor activity, suggesting a distinct effect of PD-L1, but not PD-1, antibody treatment. .
Cellular therapy with allogeneic or autologous mesenchymal stem cells (MSC) has emerged as a promising new therapeutic strategy for managing inflammatory bowel disease (IBD). However, MSC therapy ideally requires a convenient and relatively homogenous cell source (typically bone marrow or adipose tissues) and the ability to generate cells with stable phenotype and function. An alternative means of generating allogeneic MSC is to derive them from induced pluripotent stem cells (iPSC), which could in theory provide an indefinite supply of MSC with well‐defined phenotype and function. Therefore, we compared the effectiveness of iPSC‐derived MSC (iMSC) and adipose‐derived MSC (adMSC) in a mouse model of IBD (dextran sodium sulfate‐induced colitis), and investigated mechanisms of intestinal protection. We found that iMSC were equivalent to adMSC in terms of significantly improving clinical abnormalities in treated mice and reducing lesion scores and inflammation in the gut. Administration of iMSC also stimulated significant intestinal epithelial cell proliferation, increased in the numbers of Lgr5+ intestinal stem cells, and increased intestinal angiogenesis. In addition, the microbiome alterations present in mice with colitis were partially restored to resemble those of healthy mice following treatment with iMSC or adMSC. Thus, iMSC administration improved overall intestinal health and healing with equivalent potency to treatment with adMSC. This therefore is the first report of the effectiveness of iMSC in the treatment of IBD, along with a description of unique mechanisms of action with respect to intestinal healing and microbiome restoration. stem cells translational medicine 2018;7:456–467
Mesenchymal stem cells (MSC) have been shown to improve wound healing and sup-press inflammatory immune responses. Newer research also indicates that MSC exhibit antimicrobial activity, although the mechanisms underlying this activity have not been fully elucidated. Therefore, we conducted in vitro and in vivo studies to examine the ability of resting and activated MSC to kill bacteria, including multidrug resistant strains. We investigated direct bacterial killing mechanisms and the interaction of MSC with host innate immune responses to infection. In addition, the activity of MSC against chronic bacterial infections was investigated in a mouse biofilm infection model. We found that MSC exhibited high levels of spontaneous direct bactericidal activity in vitro. Moreover, soluble factors secreted by MSC inhibited Staphylococcus aureus biofilm formation in vitro and disrupted the growth of established biofilms. Secreted factors from MSC also elicited synergistic killing of drug-resistant bacteria when combined with several major classes of antibiotics. Other studies demonstrated interactions of activated MSC with host innate immune responses, including triggering of neutrophil extracellular trap formation and increased phagocytosis of bacteria. Finally, activated MSC administered systemically to mice with established S. aureus biofilm infections significantly reduced bacterial numbers at the wound site and improved wound healing when combined with antibiotic therapy. These results indicate that MSC generate multiple direct and indirect, immunologically mediated antimicrobial activities that combine to help eliminate chronic bacterial infections when the cells are administered therapeutically.
Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders.
The co-inhibitory checkpoint molecule programmed death receptor 1 (PD-1) can trigger T cell functional exhaustion upon binding to its ligand PD-L1 expressed on tumour cells or macrophages. PD-1 blocking antibodies have generated remarkable results in human cancer patients, including inducing durable responses in a number of advanced cancers. Therefore, monoclonal antibodies specific for canine PD-1 were assessed for T cell binding and induction of functional activation. A total of 5-10% of CD4 T cells and 20-25% of CD8 T cells from healthy dogs expressed PD-1, and PD-1 expression was upregulated on T cells from dogs with cancer. Functionally, PD-1 antibodies significantly enhanced T-cell activation, as assessed by proliferation and interferon-gamma (IFN-) production. PD-1 antibodies also reversed T-cell suppression induced by canine soluble PD-L1 and by tumour cells and tumour explant fragments. These findings indicate that PD-1 antibodies have potential for use in cancer immunotherapy in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.