SummaryMacrophages play a central role in inflammation and host defence against microorganisms, but they also participate actively in the resolution of inflammation after alternative activation. However, it is not known whether the resolution of inflammation requires alternative activation of new resting monocytes/macrophages or if proinflammatory activated macrophages have the capacity to switch their activation towards anti-inflammation. In order to answer this question, we first characterized differential human macrophage activation phenotypes. We found that CD163 and CD206 exhibited mutually exclusive induction patterns after stimulation by a panel of anti-inflammatory molecules, whereas CCL18 showed a third, overlapping, pattern. Hence, alternative activation is not a single process, but provides a variety of different cell populations. The capacity of macrophages to switch from one activation state to another was then assessed by determining the reversibility of CD163 and CD206 expression and of CCL18 and CCL3 production. We found that every activation state was rapidly and fully reversible, suggesting that a given cell may participate sequentially in both the induction and the resolution of inflammation. These findings may provide new insight into the inflammatory process as well as new fields of investigation for immunotherapy in the fields of chronic inflammatory diseases and cancer.
Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray–based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth.
Perivascular infiltrates composed of macrophages and lymphocytes have been described in lung biopsies of patients displaying pulmonary arterial hypertension (PAH), suggesting that circulating inflammatory cells can be recruited in affected vessels. CX(3)C chemokine fractalkine is produced by endothelial cells and promotes leukocyte recruitment, but unlike other chemokines, it can capture leukocytes rapidly and firmly in an integrin-independent manner under high blood flow. We therefore hypothesized that fractalkine may contribute to pulmonary inflammatory cell recruitment in PAH. Expression and function of the fractalkine receptor (CX(3)CR1) were studied by use of triple-color flow cytometry on circulating T-lymphocyte subpopulations in freshly isolated peripheral blood mononuclear cells from control subjects and patients with PAH. Plasma-soluble fractalkine concentrations were measured by enzyme-linked immunosorbent assay. Finally, fractalkine mRNA and protein expression were analyzed in lung samples by reverse transcriptase-polymerase chain reaction or in situ hybridization and immunohistochemistry, respectively. In patients with PAH, CX(3)CR1 expression and function are upregulated in circulating T-lymphocytes, mostly of the CD4+ subset, and plasma soluble fractalkine concentrations are elevated, as compared with control subjects. Fractalkine mRNA and protein product are expressed in pulmonary artery endothelial cells. We conclude that inflammatory mechanisms involving chemokine fractalkine and its receptor CX(3)CR1 may have a role in the natural history of PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.