Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants . monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate the potential selection response. With the development of molecular biotechnologies, new opportunities are available to characterize gene expression and identify key cellular responses to heat stress. These new tools will enable scientists to improve the accuracy and the efficiency of selection for heat tolerance. Epigenetic regulation of gene expression and thermal imprinting of the genome could also be an efficient method to improve thermal tolerance. Such techniques (e.g. perinatal heat acclimation) are currently being experimented in chicken.
Organ- and body-scale cell atlases have the potential to transform our understanding of human biology. To capture the variability present in the population, these atlases must include diverse demographics such as age and ethnicity from both healthy and diseased individuals. The growth in both size and number of single-cell datasets, combined with recent advances in computational techniques, for the first time makes it possible to generate such comprehensive large-scale atlases through integration of multiple datasets. Here, we present the integrated Human Lung Cell Atlas (HLCA) combining 46 datasets of the human respiratory system into a single atlas spanning over 2.2 million cells from 444 individuals across health and disease. The HLCA contains a consensus re-annotation of published and newly generated datasets, resolving under- or misannotation of 59% of cells in the original datasets. The HLCA enables recovery of rare cell types, provides consensus marker genes for each cell type, and uncovers gene modules associated with demographic covariates and anatomical location within the respiratory system. To facilitate the use of the HLCA as a reference for single-cell lung research and allow rapid analysis of new data, we provide an interactive web portal to project datasets onto the HLCA. Finally, we demonstrate the value of the HLCA reference for interpreting disease-associated changes. Thus, the HLCA outlines a roadmap for the development and use of organ-scale cell atlases within the Human Cell Atlas.
To assess the acclimation of pigs to heat stress, the effects of high (338C) or thermoneutral (238C) constant temperatures on feeding behaviour and components of energy balance were studied in group-housed young pigs. Three groups of five pigs were used at each temperature. After 1 week of adaptation, voluntary feed intake (VFI) and heat production (HP) were recorded for thirteen consecutive days. Animals were fed ad libitum. Fasting HP was measured on the last day. Average initial body weights (BW) were 21´4 and 20´9 kg at 23 and 338C respectively. Feeding behaviour was measured individually and rate of feed intake and characteristics of feeding behaviour were calculated. The O 2 consumption, CO 2 production and physical activity of the group were used to calculate total HP (HP tot ) and its components, i.e. fasting HP (HP fas ), HP due to physical activity (HP act ) and thermic effect of feed (TEF). The BW gain and VFI were reduced by 37 and 30 % respectively at 338C. The decrease in VFI corresponded to reduced consumption time (234 %) and size of the meals (232 %). Feeding behaviour was mostly diurnal (66 % of the VFI), and the rate of feed intake (28 g/min) was not affected by temperature. Daily HP tot , HP fas and TEF, expressed per kg metabolic weight (BW 0´60 ), were significantly decreased at 338C by 22, 18 and 35 % respectively, whereas HP act was not affected; TEF expressed per g feed was not affected (2 kJ/g). The decrease in HP tot at 338C was caused by a reduction in TEF and HP fas (kJ/d per/kg BW 0´60 ), which are both related to reduction in VFI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.