BackgroundBreast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer.Methods and FindingsBy means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis.ConclusionsOur results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer.
The ARF tumor suppressor signals through p53 and other poorly defined anti-proliferative pathways to block carcinogenesis. In a search for new regulators of ARF signaling, we discovered a novel nuclear protein that we named NIAM (nuclear interactor of ARF and MDM2) for its ability to bind both ARF and the p53 antagonist MDM2. NIAM protein is normally expressed at low to undetectable levels in cells because of, at least in part, MDM2-mediated ubiquitination and proteasomal degradation. When reintroduced into cells, NIAM activated p53, caused a G 1 phase cell cycle arrest, and collaborated with ARF in an additive fashion to suppress proliferation. Notably, NIAM retains growth inhibitory activity in cells lacking ARF and/or p53, and knockdown experiments revealed that it is not essential for ARF-mediated growth inhibition. Thus, NIAM and ARF act in separate anti-proliferative pathways that intersect mechanistically and suppress growth more effectively when jointly activated. Intriguingly, silencing of NIAM accelerated chromosomal instability, and microarray analyses showed reduced NIAM mRNA expression in numerous primary human tumors. This study identifies a novel protein with tumor suppressor-like behaviors and functional links to ARF-MDM2-p53 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.