SummaryWe have used Salmonella enterica serovar Typhimurium (S. typhimurium) which are able to colonize tumours besides spleen and liver. Bacteria were equipped with constructs encoding green fluorescent protein or luciferase as reporters under control of the promoter PBAD that is inducible with L-arabinose. Reporter genes could be induced in culture but also when the bacteria resided within the mouse macrophages J774A.1. More important, strong expression of reporters by the bacteria could be detected in mice after administration of L-arabinose. This was especially pronounced in bacteria colonizing tumours. Histology demonstrated that the bacteria had accumulated in and close to necrotic areas of tumours. Bacterial gene induction was observed in both regions. PBAD is tightly controlled also in vivo because gene E of bacteriophage FX174 could be introduced as inducible suicide gene. The possibility to deliberately induce genes in bacterial carriers within the host should render them extremely powerful tools for tumour therapy.
The leishmaniases are a complex of vector-borne diseases caused by protozoan parasites of the genus Leishmania. LEISHDNAVAX is a multi-antigen, T-cell epitope-enriched DNA vaccine candidate against human leishmaniasis. The vaccine candidate has been proven immunogenic and showed prophylactic efficacy in preclinical studies. Here, we describe the safety testing of LEISHDNAVAX in naive mice and rats, complemented by the demonstration of tolerability in Leishmania-infected mice. Biodistribution and persistence were examined following single and repeated intradermal (i.d.) administration to rats. DNA vectors were distributed systemically but did not accumulate upon repeated injections. Although vector DNA was cleared from most other tissues within 60 days after the last injection, it persisted in skin at the site of injection and in draining lymph nodes. Evaluation of single-dose and repeated-dose toxicity of the vaccine candidate after i.d. administration to naive, non-infected mice did not reveal any safety concerns. LEISHDNAVAX was also well tolerated in Leishmania-infected mice. Taken together, our results substantiate a favorable safety profile of LEISHDNAVAX in both naive and infected animals and thus, support the initiation of clinical trials for both preventive and therapeutic applications of the vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.