The effect of the diving response on alveolar gas exchange was investigated in 15 subjects. During steady-state exercise (80 W) on a cycle ergometer, the subjects performed 40-s apneas in air and 40-s apneas with face immersion in cold (10 degrees C) water. Heart rate decreased and blood pressure increased during apneas, and the responses were augmented by face immersion. Oxygen uptake from the lungs decreased during apnea in air (-22% compared with eupneic control) and was further reduced during apnea with face immersion (-25% compared with eupneic control). The plasma lactate concentration increased from control (11%) after apnea in air and even more after apnea with face immersion (20%), suggesting an increased anaerobic metabolism during apneas. The lung oxygen store was depleted more slowly during apnea with face immersion because of the augmented diving response, probably including a decrease in cardiac output. Venous oxygen stores were probably reduced by the cardiovascular responses. The turnover times of these gas stores would have been prolonged, reducing their effect on the oxygen uptake in the lungs. Thus the human diving response has an oxygen-conserving effect.
The effects of chronic hypoxia (CH) on respiratory muscle are poorly understood. The aim of the present study was to examine the effects of CH on respiratory muscle structure and function, and to determine whether nitric oxide is implicated in respiratory muscle adaptation to CH.Male Wistar rats were exposed to CH for 1-6 weeks. Sternohyoid and diaphragm muscle contractile properties, muscle fibre type and size, the density of fibres expressing sarco/ endoplasmic reticulum calcium-ATPase (SERCA) 2 and sodium-potassium ATPase (Na + ,K + -ATPase) pump content were determined. Muscle succinate dehydrogenase (SDH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) dehydrogenase activities were also assessed. Acute and chronic blockade of nitric oxide synthase (NOS) was employed to determine whether or not NO is critically involved in functional remodelling in CH muscles. CH improved diaphragm, but not sternohyoid, fatigue tolerance in a time-dependent fashion. This adaptation was not attributable to increased SDH or NADPH dehydrogenase activities. The areal density of muscle fibres and relative area of fibres expressing SERCA2 were unchanged. Na + ,K + -ATPase pump content was significantly increased in CH diaphragm. Chronic NOS inhibition decreased diaphragm Na + ,K + -ATPase pump content and prevented CH-induced increase in muscle endurance. This study provides novel insight into the mechanisms involved in CH-induced muscle plasticity. The results may be of relevance to respiratory disorders characterised by CH, such as chronic obstructive pulmonary disease.KEYWORDS: Chronic obstructive pulmonary disease, fatigue, myosin heavy chain isoforms, nitric oxide synthase, sarco/endoplasmic reticulum calcium-ATPase 2 S keletal muscle has enormous capacity for remodelling, as evident in various physiological and pathophysiological settings. Chronic hypoxia (CH), a feature of respiratory disease, is known to affect skeletal muscle structure and function. Alterations include changes in capillarity [1,2], fibre size and distribution [3][4][5][6][7][8][9][10], oxidative capacity [5,6,11,12] and contractile performance [5,9,[13][14][15][16]. CH induces reflex hyperventilation. Thus respiratory muscles are unique in that they must increase their workload in the face of a reduction in oxygen availability, necessary for aerobic metabolism. Respiratory muscle remodelling is a feature of chronic obstructive pulmonary disease (COPD) [17][18][19][20][21][22][23][24][25][26][27], which may be the result of hypoxic adaptation. Surprisingly, there is a general paucity of information concerning the effects of CH on respiratory muscle structure and function despite the clinical relevance. Translational animal models permit examination of the effects of CH on skeletal muscle independent of other confounding factors that are present in disease. Furthermore, they permit a thorough exploration of the molecular mechanisms that underpin muscle adaptation. As such, the major aim of the present study was to conduct a compreh...
New Findings r What is the central question of this study?The effects of chronic intermittent hypoxia (CIH) on respiratory muscles are relatively underexplored. It is speculated that muscle dysfunction and other key morbidities associated with sleep apnoea are the result of CIH-induced oxidative stress. We sought to investigate the putative role of CIH-induced reactive oxygen species in the development of respiratory muscle dysfunction. r What is the main finding and its importance?The CIH-induced diaphragm muscle fatigue is time and intensity dependent and is associated with a modest oxidative stress. Supplementation with N-acetyl cysteine prevents CIH-induced diaphragm muscle dysfunction, suggesting that antioxidant supplementation may have therapeutic value in respiratory muscle disorders characterized by CIH, such as obstructive sleep apnoea.Respiratory muscle dysfunction documented in sleep apnoea patients is perhaps due to oxidative stress secondary to chronic intermittent hypoxia (CIH). We sought to explore the effects of different CIH protocols on respiratory muscle form and function in a rodent model. Adult male Wistar rats were exposed to CIH (n = 32) consisting of 90 s normoxia-90 s hypoxia (either 10 or 5% oxygen at the nadir; arterial O 2 saturation ß90 or 80%, respectively] for 8 h per day or to sham treatment (air-air, n = 32) for 1 or 2 weeks. Three additional groups of CIH-treated rats (5% O 2 for 2 weeks) had free access to water containing N-acetyl cysteine (1% NAC, n = 8), tempol (1 mm, n = 8) or apocynin (2 mm, n = 8). Functional properties of the diaphragm muscle were examined ex vivo at 35°C. The myosin heavy chain and sarco(endo)plasmic reticulum Ca 2+ -ATPase isoform distribution, succinate dehydrogenase and glyercol phosphate dehydrogenase enzyme activities, Na + -K + -ATPase pump content, concentration of thiobarbituric acid reactive substances, DNA oxidation and antioxidant capacity were determined. Chronic intermittent hypoxia (5% oxygen at the nadir; 2 weeks) decreased diaphragm muscle force and endurance. All three drugs reversed the deleterious effects of CIH on diaphragm endurance, but only NAC prevented CIH-induced diaphragm weakness. Chronic intermittent hypoxia increased diaphragm muscle myosin heavy chain 2B areal density and oxidized glutathione/reduced glutathione (GSSG/GSH) ratio. We conclude that CIH-induced diaphragm dysfunction is reactive oxygen species dependent. N-Acetyl cysteine was most effective in reversing CIH-induced effects on diaphragm. Our results suggest that respiratory muscle dysfunction in sleep apnoea may be the result of oxidative stress and, as such, antioxidant treatment could prove a useful adjunctive therapy for the disorder. DOI
The purpose of this study was to compare the responsiveness of changes in Ca(2+)-content and calpain-calpastatin gene expression to concentric and eccentric single-bout and repeated exercise. An exercise group (n = 14) performed two bouts of bench-stepping exercise with 8 weeks between exercise bouts, and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified for muscle Ca(2+)-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses as well as plasma levels of creatine kinase and myoglobin were all attenuated after the repeated eccentric exercise bout (P < 0.05). Total muscle Ca(2+)-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P < 0.05), with no alteration in expression between bouts. Calpain 1 and calpain 3 mRNA did not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain-calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function, no immediate support was provided to suggest that regulation of expression of specific system components is involved in the repeated bout adaptation.
The degree of muscle damage depends on running distance, and a significant Ca accumulation in muscle is seen after 20 km. Ten weeks of endurance training does not influence Ca homeostasis and muscle damage after 10-km running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.