This study addressed the interaction between short-term adaptation to apneas with face immersion and erythrocyte release from the spleen. Twenty healthy volunteers, including ten splenectomized subjects, participated. After prone rest, they performed five maximal-duration apneas with face immersion in 10 degrees C water, with 2-min intervals. Cardiorespiratory parameters and venous blood samples were collected. In subjects with spleens, hematocrit and hemoglobin concentration increased by 6.4% and 3.3%, respectively, over the serial apneas and returned to baseline 10 min after the series. A delay of the physiological breaking point of apnea, by 30.5% (17 s), was seen only in this group. These parameters did not change in the splenectomized group. Plasma protein concentration, preapneic alveolar PCO2, inspired lung volume, and diving bradycardia remained unchanged throughout the series in both groups. Serial apneas thus triggered the hematological changes that have been previously observed after long apneic diving shifts; they were rapidly reversed and did not occur in splenectomized subjects. This suggests that splenic contraction occurs in humans as a part of the diving response and may prolong repeated apneas.
This study addressed the effects of apnea in air and apnea with face immersion in cold water (10 degrees C) on the diving response and arterial oxygen saturation during dynamic exercise. Eight trained breath-hold divers performed steady-state exercise on a cycle ergometer at 100 W. During exercise, each subject performed 30-s apneas in air and 30-s apneas with face immersion. The heart rate and arterial oxygen saturation decreased and blood pressure increased during the apneas. Compared with apneas in air, apneas with face immersion augmented the heart rate reduction from 21 to 33% (P < 0.001) and the blood pressure increase from 34 to 42% (P < 0.05). The reduction in arterial oxygen saturation from eupneic control was 6.8% during apneas in air and 5.2% during apneas with face immersion (P < 0.05). The results indicate that augmentation of the diving response slows down the depletion of the lung oxygen store, possibly associated with a larger reduction in peripheral venous oxygen stores and increased anaerobiosis. This mechanism delays the fall in alveolar and arterial PO(2) and, thereby, the development of hypoxia in vital organs. Accordingly, we conclude that the human diving response has an oxygen-conserving effect during exercise.
The effect of the diving response on alveolar gas exchange was investigated in 15 subjects. During steady-state exercise (80 W) on a cycle ergometer, the subjects performed 40-s apneas in air and 40-s apneas with face immersion in cold (10 degrees C) water. Heart rate decreased and blood pressure increased during apneas, and the responses were augmented by face immersion. Oxygen uptake from the lungs decreased during apnea in air (-22% compared with eupneic control) and was further reduced during apnea with face immersion (-25% compared with eupneic control). The plasma lactate concentration increased from control (11%) after apnea in air and even more after apnea with face immersion (20%), suggesting an increased anaerobic metabolism during apneas. The lung oxygen store was depleted more slowly during apnea with face immersion because of the augmented diving response, probably including a decrease in cardiac output. Venous oxygen stores were probably reduced by the cardiovascular responses. The turnover times of these gas stores would have been prolonged, reducing their effect on the oxygen uptake in the lungs. Thus the human diving response has an oxygen-conserving effect.
The effects of lung volume and involuntary breathing movements on the human diving response were studied in 17 breath-hold divers. Each subject performed maximal effort apnoeas and simulated dives by apnoea and cold water face immersion, at lung volumes of 60%, 85%, and 100% of prone vital capacity (VC). Time of apnoea, blood pressure, heart rate, skin capillary blood flow, and fractions of end-expiratory CO2 and O2 were measured. The length of the simulated dives was the shortest at 60% of VC, probably because at this level the build up of alveolar CO2 was fastest. Apnoeas with face immersion at 100% of VC gave a marked drop in arterial pressure during the initial 20 s, probably due to high intrathoracic pressure mechanically reducing venous return. The diving response was most pronounced at 60% of VC. We concluded that at the two larger lung volumes both mechanical factors and input from pulmonary stretch receptors influenced the bradycardia and vasoconstriction, resulting in a nonlinear relationship between the breath-hold lung volume and magnitude of the diving response in the near-VC range. Furthermore, the involuntary breathing movements that appeared during the struggle phase of the apnoeas were too small to affect the diving response.
Increased hematocrit (Hct) attributable to splenic contraction accompanies human apneic diving or apnea with face immersion. Apnea also causes heart rate reduction and peripheral vasoconstriction, i.e., a cardiovascular diving response, which is augmented by face immersion. The aim was to study the role of apnea and facial immersion in the initiation of the hematological response and to relate this to the cardiovascular diving response and its oxygen conservation during repeated apneas. Seven male volunteers performed two series of five apneas of fixed near-maximal duration: one series in air (A) and the other with facial immersion in 10 degrees C water (FIA). Apneas were spaced by 2 min and series by 20 min of rest. Venous blood samples, taken before and after each apnea, were analysed for Hct, hemoglobin concentration (Hb), lactic acid, blood gases and pH. Heart rate, skin capillary blood flow and arterial oxygen saturation were continuously measured non-invasively. A transient increase of Hct and Hb by approximately 4% developed progressively across both series. As no increase of the response resulted with face immersion, we concluded that the apnea, or its consequences, is the major stimulus evoking splenic contraction. An augmented cardiovascular diving response occurred during FIA compared to A. Arterial oxygen saturation remained higher, venous oxygen stores were more depleted and lactic acid accumulation was higher across the FIA series, indicating oxygen conservation with the more powerful diving response. This study shows that the hematological response is not involved in causing the difference in oxygen saturation between apnea and apnea with face immersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.