In a world powered by intermittent renewable energy, electrolyzers will play a central role in converting electrical energy into chemical energy, thereby decoupling the production of transport fuels and chemicals from today’s fossil resources and decreasing the reliance on bioenergy. Solid oxide electrolysis cells (SOECs) offer two major advantages over alternative electrolysis technologies. First, their high operating temperatures result in favorable thermodynamics and reaction kinetics, enabling unrivaled conversion efficiencies. Second, SOECs can be thermally integrated with downstream chemical syntheses, such as the production of methanol, dimethyl ether, synthetic fuels, or ammonia. SOEC technology has witnessed tremendous improvements during the past 10 to 15 years and is approaching maturity, driven by advances at the cell, stack, and system levels.
The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at
850°C
, at current densities of −1.0, −1.5, and
−2.0A/cm2
, with a 50:50
(normalH2O:normalH2)
gas supplied to the Ni/YSZ hydrogen electrode and oxygen supplied to the lanthanum, strontium manganite (LSM)/YSZ oxygen electrode. Electrode polarization resistance degradation is not directly related to the applied current density but rather a consequence of adsorbed impurities in the Ni/YSZ hydrogen electrode. However, the ohmic resistance degradation increases with applied current density. The ohmic resistance degradation is attributed to oxygen formation in the YSZ electrolyte grain boundaries near the oxygen electrode/electrolyte interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.