In this study, a metabolic network describing the primary metabolism of Chlamydomonas reinhardtii was constructed. By performing chemostat experiments at different growth rates, energy parameters for maintenance and biomass formation were determined. The chemostats were run at low irradiances resulting in a high biomass yield on light of 1.25 g mol−1. The ATP requirement for biomass formation from biopolymers (Kx) was determined to be 109 mmol g−1 (18.9 mol mol−1) and the maintenance requirement (mATP) was determined to be 2.85 mmol g−1 h−1. With these energy requirements included in the metabolic network, the network accurately describes the primary metabolism of C. reinhardtii and can be used for modeling of C. reinhardtii growth and metabolism. Simulations confirmed that cultivating microalgae at low growth rates is unfavorable because of the high maintenance requirements which result in low biomass yields. At high light supply rates, biomass yields will decrease due to light saturation effects. Thus, to optimize biomass yield on light energy in photobioreactors, an optimum between low and high light supply rates should be found. These simulations show that metabolic flux analysis can be used as a tool to gain insight into the metabolism of algae and ultimately can be used for the maximization of algal biomass and product yield.Electronic supplementary materialThe online version of this article (doi:10.1007/s10811-011-9674-3) contains supplementary material, which is available to authorized users.
BackgroundMicroalgal triacylglycerides (TAGs) are a promising sustainable feedstock for the biofuel, chemical and food industry. However, industrial production of microalgal products for commodity markets is not yet economically viable, largely because of low microalgal productivity. The latter is strictly dependent on initial-biomass-specific (IBS) light availability (i.e. ratio of light impinging on reactor ground area divided by initial biomass concentration per ground area). This study investigates the effect of IBS-light availability on batch TAG production for Nannochloropsis sp. cultivated in two outdoor tubular reactors (i.e. vertical and horizontal) at different initial biomass concentrations for the TAG accumulation phase, during two distinct seasons (i.e. high and low light conditions).ResultsIncreasing IBS-light availability led to both a higher IBS-TAG production rate and TAG content at the end of the batch, whereas biomass yield on light decreased. As a result, an optimum IBS-light availability was determined for the TAG productivity obtained at the end of the batch and several guidelines could be established. The vertical reactor (VR) should be operated at an initial biomass concentration of 1.5 g L−1 to achieve high TAG productivities (1.9 and 3.2 g m−2 day−1 under low and high light, respectively). Instead, the horizontal reactor (HR) should be operated at 2.5 g L−1 under high light (2.6 g m−2 day−1), and at 1.5 g L−1 under low light (1.4 g m−2 day−1).ConclusionsFrom this study, the great importance of IBS-light availability on TAG production can be deduced. Although maintaining high light availabilities in the reactor is key to reach high TAG contents at the end of the batch, considerable losses in TAG productivity were observed for the two reactors regardless of light condition, when not operated at optimal initial biomass concentrations (15–40% for VR and 30–60% for HR).Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0283-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.