This study explores the effect of rearing environment on water bacterial communities (BC) and the association with those present in the gut of Nile tilapia larvae (Oreochromis niloticus, Linnaeus) grown in either recirculating or active suspension systems. 454 pyrosequencing of PCR-amplified 16S rRNA gene fragments was applied to characterize the composition of water, feed and gut bacteria communities. Observed changes in water BC over time and differences in water BCs between systems were highly correlated with corresponding water physico-chemical properties. Differences in gut bacterial communities during larval development were correlated with differences in water communities between systems. The correlation of feed BC with those in the gut was minor compared to that between gut and water, reflected by the fact that 4 to 43 times more OTUs were shared between water and gut than between gut and feed BC. Shared OTUs between water and gut suggest a successful transfer of microorganisms from water into the gut, and give insight about the niche and ecological adaptability of water microorganisms inside the gut. These findings suggest that steering of gut microbial communities could be possible through water microbial management derived by the design and functionality of the rearing system.
As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study was to determine the influence of different duty cycles on oxygen yield on absorbed light energy and photosynthetic oxygen evolution. Net oxygen evolution of Chlamydomonas reinhardtii was measured for four duty cycles (0.05, 0.1, 0.2, and 0.5) in a biological oxygen monitor (BOM). Oversaturating light flashes were applied in a square-wave fashion with four flash frequencies (5, 10, 50, and 100 Hz). Algae were precultivated in a turbidostat and acclimated to a low photon flux density (PFD). A photosynthesis-irradiance (PI) curve was measured under continuous illumination and used to calculate the net oxygen yield, which was maximal between a PFD of 100 and 200 μmol m⁻² s⁻¹. Net oxygen yield under flashing light was duty cycle-dependent: the highest yield was observed at a duty cycle of 0.1 (i.e., time-averaged PFD of 115 μmol m⁻² s⁻¹). At lower duty cycles, maintenance respiration reduced net oxygen yield. At higher duty cycles, photon absorption rate exceeded the maximal photon utilization rate, and, as a result, surplus light energy was dissipated which led to a reduction in net oxygen yield. This behavior was identical with the observation under continuous light. Based on these data, the optimal balance between oxygen yield and production rate can be determined to maximize PBR productivity.
An economically feasible microalgal lipid industry heavily relies on the selection of suitable strains. Because microalgae lipid content increases under a range of adverse conditions (e.g. nutrient deprivation, high light intensity), photosynthetic activity is usually strongly reduced. As a consequence, lipid productivity rapidly declines overtime, after reaching a maximum within the first days of cultivation. The microalgae Chlorella vulgaris, Chlorococcum littorale, Nannochloropsis oculata, Nannochloropsis sp., Neochloris oleoabundans, Stichococcus bacillaris and Tetraselmis suecica were compared on fatty acid content and productivity, and also on photosynthetic activity under nitrogen (N) starvation. Cultures in N-replete conditions were used as reference. Photosystem II (PSII) maximum efficiency was followed during the experiment, as proxy for the change in photosynthetic activity of the cells. Strains with a high capacity for both lipid accumulation as well as high photosynthetic activity under N starvation exhibited a high lipid productivity over time. Among the tested strains, Nannochloropsis sp. showed highest fatty acid content (45 % w/w) and productivity (238 mg L −1 day −1 ) as well as PSII maximum efficiency, demonstrating to be the most suitable strain, of those tested, for lipid production. This study highlights that for microalgae, maintaining a high photosynthetic efficiency during stress is the key to maintain high fatty acid productivities overtime and should be considered when selecting strains for microalgal lipid production.
BackgroundFor a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. The operational strategy affects TAG productivity but a systematic comparison between different strategies is lacking. For this, physiological responses of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivations under continuous light, and condensed into a mechanistic model.ResultsThe model, which successfully described both strategies, was used to identify potential improvements for both batch and repeated-batch and compare the two strategies on optimized TAG yields on light (amount of TAGs produced per mol of supplied PAR photons). TAG yields on light, for batch, from 0.12 (base case at high light) to 0.49 g molph−1 (at low light and with improved strain) and, for repeated-batch, from 0.07 (base case at high light) to 0.39 g molph−1 (at low light with improved strain and optimized repeated-batch settings). The base case yields are in line with the yields observed in current state-of-the-art outdoor TAG production.ConclusionsFor continuous light, an optimized batch process will always result in higher TAG yield on light compared to an optimized repeated-batch process. This is mainly because repeated-batch cycles start with N-starved cells. Their reduced photosynthetic capacity leads to inefficient light use during the regrowth phase which results in lower overall TAG yields compared to a batch process.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0475-4) contains supplementary material, which is available to authorized users.
BackgroundMicroalgal triacylglycerides (TAGs) are a promising sustainable feedstock for the biofuel, chemical and food industry. However, industrial production of microalgal products for commodity markets is not yet economically viable, largely because of low microalgal productivity. The latter is strictly dependent on initial-biomass-specific (IBS) light availability (i.e. ratio of light impinging on reactor ground area divided by initial biomass concentration per ground area). This study investigates the effect of IBS-light availability on batch TAG production for Nannochloropsis sp. cultivated in two outdoor tubular reactors (i.e. vertical and horizontal) at different initial biomass concentrations for the TAG accumulation phase, during two distinct seasons (i.e. high and low light conditions).ResultsIncreasing IBS-light availability led to both a higher IBS-TAG production rate and TAG content at the end of the batch, whereas biomass yield on light decreased. As a result, an optimum IBS-light availability was determined for the TAG productivity obtained at the end of the batch and several guidelines could be established. The vertical reactor (VR) should be operated at an initial biomass concentration of 1.5 g L−1 to achieve high TAG productivities (1.9 and 3.2 g m−2 day−1 under low and high light, respectively). Instead, the horizontal reactor (HR) should be operated at 2.5 g L−1 under high light (2.6 g m−2 day−1), and at 1.5 g L−1 under low light (1.4 g m−2 day−1).ConclusionsFrom this study, the great importance of IBS-light availability on TAG production can be deduced. Although maintaining high light availabilities in the reactor is key to reach high TAG contents at the end of the batch, considerable losses in TAG productivity were observed for the two reactors regardless of light condition, when not operated at optimal initial biomass concentrations (15–40% for VR and 30–60% for HR).Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0283-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.