The objective of the present study was to test the hypothesis that the acclimation to different light intensities in the diatom Phaeodactylum tricornutum is controlled by light quality perception mechanisms. Therefore, semi-continuous cultures of P. tricornutum were illuminated with equal amounts of photosynthetically absorbed radiation of blue (BL), white (WL), and red light (RL) and in combination of two intensities of irradiance, low (LL) and medium light (ML). Under LL conditions, growth rates and photosynthesis rates were similar for all cultures. However, BL cultures were found to be in an acclimation state with an increased photoprotective potential. This was deduced from an increased capacity of non-photochemical quenching, a larger pool of xanthophyll cycle pigments, and a higher de-epoxidation state of xanthophyll cycle pigments compared to WL and RL cultures. Furthermore, in the chloroplast membrane proteome of BL cells, an upregulation of proteins involved in photoprotection, e.g. the Lhcx1 protein and zeaxanthin epoxidase, was evident. ML conditions induced increased photosynthesis rates and a further enhanced photoprotective potential for algae grown under BL and WL. In contrast, RL cultures exhibited no signs of acclimation towards increased irradiance. The data implicate that in diatoms the photoacclimation to high light intensities requires the perception of blue light.
Aureochromes constitute a family of blue light (BL) receptors which are found exclusively in heterokont algae such as diatoms (Bacillariophyceae) and yellow-green algae (Xanthophyceae). Previous studies on the diatom Phaeodactylum tricornutum indicate that the formation of a high light acclimated phenotype is mediated by the absorption of BL and that aureochromes might play an important role in this process. P. tricornutum possesses four genes encoding aureochromes. In this study we confirm the nuclear localisation of the PtAUREO1a, 1b and 2 proteins. Furthermore we studied the physiology of light quality acclimation in genetically transformed P. tricornutum cell lines with reduced expression of the aureochrome 1a gene. The results demonstrate that the AUREO1a protein has a distinct function in light acclimation. However, rather unexpectedly AUREO1a seems to repress high light acclimation which resulted in a state of ‘hyper’ high light acclimation in aureo1a silenced strains. This was indicated by characteristic changes of several photosynthetic parameters, including increased maximum photosynthesis rates, decreased chlorophyll a contents per cell and increased values of non-photochemical quenching in AUREO1a silenced strains compared to wild type cultures. Strikingly, AUREO1a silenced strains exhibited phenotypic differences compared to wild type cells during cultivation under BL as well as under red light (RL) conditions. Therefore, AUREO1a might influence the RL signalling process, suggesting an interaction of AUREO1a with RL perception pathways.
Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL) to blue light (BL) and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.