Abstract:Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river-floodplain systems. This article describes a method of quantifying floodinduced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully-Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)-derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in-stream and floodplain gauge records. A range of offstream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1-, 20-and 50-year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off-stream habitats during floods.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench-marked cross-sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change . The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross-section surveys suggest that channel width has increased by an average of 0·74 (± ± ± ± ±0·47) m a − − − − −1 over the study period (or ~0·8% yr − − − − −1 ). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a − − − − −1 . The cross-section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Figure 1. (A) Daintree River catchment, showing the location of the main stream gauge, broad vegetation types and major tributaries. (B) Study reach between the stream gauge and Daintree Village, showing the location of field monitoring sites and additional aerial photo cross-sections and pin sites. This figure is available in colour online at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.