Meningiomas are the most common primary tumors of the CNS and account for up to 30% of all CNS tumors. An increased risk of meningiomas has been associated with certain tumor-susceptibility syndromes, especially neurofibromatosis type II, but no gene defects predisposing to isolated familial meningiomas have thus far been identified. Here, we report on a family of five meningioma-affected siblings, four of whom have multiple tumors. No NF2 mutations were identified in the germline or tumors. We combined genome-wide linkage analysis and exome sequencing, and we identified in suppressor of fused homolog (Drosophila), SUFU, a c.367C>T (p.Arg123Cys) mutation segregating with the meningiomas in the family. The variation was not present in healthy controls, and all seven meningiomas analyzed displayed loss of the wild-type allele according to the classic two-hit model for tumor-suppressor genes. In silico modeling predicted the variant to affect the tertiary structure of the protein, and functional analyses showed that the activity of the altered SUFU was significantly reduced and therefore led to dysregulated hedgehog (Hh) signaling. SUFU is a known tumor-suppressor gene previously associated with childhood medulloblastoma predisposition. Our genetic and functional analyses indicate that germline mutations in SUFU also predispose to meningiomas, particularly to multiple meningiomas. It is possible that other genic mutations resulting in aberrant activation of the Hh pathway might underlie meningioma predisposition in families with an unknown etiology.
Several single nucleotide polymorphisms (SNPs) affecting DNA repair capacity and modifying cancer susceptibility have been described. We evaluated the association of SNPs Arg194Trp, Arg280His, and Arg399Gln in the X-ray cross-complementing group 1 (XRCC1) and Thr241Met in the X-ray cross-complementing group 3 (XRCC3) DNA repair genes with the risk of brain tumors. The Caucasian study population consisted of 701 glioma (including 320 glioblastoma) cases, 524 meningioma cases, and 1,560 controls in a prospective population-based case-control study conducted in Denmark, Finland, Sweden, and the UK. The studied SNPs were not significantly associated with the risk of brain tumors. The highest odds ratios (ORs) for the associations were observed between the homozygous variant genotype XRCC1 Gln399Gln and the risk of glioma (OR = 1.32; 95% confidence interval, CI, 0.97-1.81), glioblastoma (OR = 1.48; 95% CI, 0.98-2.24), and meningioma (OR = 1.34; 95% CI, 0.96-1.86). However, in pair-wise comparisons a few SNP combinations were associated with the risk of brain tumors: Among others, carriers of both homozygous variant genotypes, i.e., XRCC1 Gln399Gln and XRCC3 Met241Met, were associated with a three-fold increased risk of glioma (OR = 3.18; 95% CI, 1.26-8.04) and meningioma (OR = 2.99; 95% CI, 1.16-7.72). In conclusion, no significant association with brain tumors was found for any of the polymorphisms, when examined one by one. Our results indicated possible associations between combinations of XRCC1 and XRCC3 SNPs and the risk of brain tumors.
We emphasise the rarity of this possible association, and also the need for further study to establish whether a causal relationship exists. We do advocate that trial discontinuation of a statin should be considered in patients with serious neuromuscular disease such as the ALS-like syndrome, given the poor prognosis and a possibility that progression of the disease may be halted or even reversed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.