Infection of mice with Salmonella typhimurium gives rise to a disease similar to human typhoid fever caused by S. typhi. Since S. typhimurium is a facultative intracellular bacterium, the requirement of B cells in the immune response against S. typhimurium is a longstanding matter of debate. By infecting mice on a susceptible background and deficient in B cells (Igμ−/− mice) with different strains of S. typhimurium, we could for the first time formally clarify the role of B cells in the response against S. typhimurium. Compared with Igμ+/+ mice, LD50 values in Igμ−/− mice were reduced during primary, and particularly secondary, oral infection with virulent S. typhimurium. After systemic infection, Igμ−/− mice cleared attenuated aroA− S. typhimurium, but vaccine-induced protection against systemic infection with virulent S. typhimurium involved both B cell-dependent and -independent effector mechanisms. Thus, B cell-mediated immunity plays a distinct role in control of S. typhimurium in susceptible mice.
CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.
Objective Doxorubicin (DOX) is one of the most effective chemotherapeutic agents, but cardiotoxicity limits DOX therapy. Although the mechanisms are not entirely understood, reactive oxygen species (ROS) appear to be involved in DOX cardiotoxicity. Ca/calmodulin dependent protein kinase II (CaMKII) can be activated by ROS through oxidation and is known to contribute to myocardial dysfunction through Ca leakage from the sarcoplasmic reticulum (SR). Rationale We hypothesized that CaMKII contributes to DOX-induced defects in intracellular Ca ([Ca]i) handling. Methods Cardiac myocytes were isolated from wild-type (WT) adult rat hearts and from mouse hearts lacking the predominant myocardial CaMKII isoform (CaMKIIδ−/−, KO) vs. WT. Isolated cardiomyocytes were investigated 30 min after DOX (10 µmol/L) superfusion, using epifluorescence and confocal microscopy. Intracellular ROS-generation ([ROS]i) and [Ca]i handling properties were assessed. In a subset of experiments, KN-93 or AIP (each 1 µmol/L) were used to inhibit CaMKII. Melatonin (Mel, 100 µmol/L) served as ROS-scavenger. Western blots were performed to determine the amount of CaMKII phosphorylation and oxidation. Results DOX increased [ROS]i and led to significant diastolic [Ca]i overload in rat myocytes. This was associated with reduced [Ca]i transients, a 5.8-fold increased diastolic SR Ca leak and diminished SR Ca content. ROS-scavenging partially rescued Ca handling. Western blots revealed increased CaMKII phosphorylation, but not CaMKII oxidation after DOX. Pharmacological CaMKII inhibition attenuated diastolic [Ca]i overload after DOX superfusion and led to partially restored [Ca]i transients and SR Ca content, presumably due to reduced Ca spark frequency. In line with this concept, isoform-specific CaMKIIδ-KO attenuated diastolic [Ca]i overload and Ca spark frequency. Conclusions DOX exposure induces CaMKII-dependent SR Ca leakage, which partially contributes to impaired cellular [Ca]i homeostasis. Pharmacological and genetic CaMKII inhibition attenuated but did not completely abolish the effects of DOX on [Ca]i. In light of the clinical relevance of DOX, further investigations seem appropriate to determine if CaMKII inhibition could reduce DOX-induced cardiotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.