A major challenge in affluent societies is the increase in disorders related to gut and metabolic health. Chronic over nutrition by unhealthy foods high in energy, fat, and sugar, and low in dietary fibre is a key environmental factor responsible for this development, which may cause local and systemic inflammation. A low intake of dietary fibre is a limiting factor for maintaining a viable and diverse microbiota and production of short-chain fatty acids in the gut. A suppressed production of butyrate is crucial, as this short-chain fatty acid (SCFA) can play a key role not only in colonic health and function but also at the systemic level. At both sites, the mode of action is through mediation of signalling pathways involving nuclear NF-κB and inhibition of histone deacetylase. The intake and composition of dietary fibre modulate production of butyrate in the large intestine. While butyrate production is easily adjustable it is more variable how it influences gut barrier function and inflammatory markers in the gut and periphery. The effect of butyrate seems generally to be more consistent and positive on inflammatory markers related to the gut than on inflammatory markers in the peripheral tissue. This discrepancy may be explained by differences in butyrate concentrations in the gut compared with the much lower concentration at more remote sites.
The effects of increased colonic fermentation of dietary fibres (DF) on the net portal flux (NPF) of carbohydrate-derived metabolites (glucose, SCFA and, especially, butyrate), hormones (insulin, C-peptide, glucagon-like peptide 1 and glucose-dependent insulinotropic peptide) and NEFA were studied in a healthy catheterised pig model. A total of six pigs weighing 59 (SEM 1·6) kg were fitted with catheters in the mesenteric artery and in the portal and hepatic veins, and a flow probe around the portal vein, and included in a double 3 £ 3 cross-over design with three daily feedings (at 09.00, 14.00 and 19.00 hours). Fasting and 5 h postprandial blood samples were collected after 7 d adaptation to each diet. The pigs were fed a low-DF Western-style control diet (WSD) and two high-DF diets (an arabinoxylan-enriched diet (AXD) and a resistant starch-enriched diet (RSD)). The NPF of insulin was lower (P¼ 0·04) in AXD-fed pigs (4·6 nmol/h) than in RSD-fed pigs (10·5 nmol/h), despite the lowest NPF of glucose being observed in RSD-fed pigs (203 mmol/h, P¼ 0·02). The NPF of total SCFA, acetate, propionate and butyrate were high, intermediate and low (P, 0·01) in AXD-, RSD-and WSD-fed pigs, respectively, with the largest relative increase being observed for butyrate in response to arabinoxylan supplementation. In conclusion, the RSD and AXD had different effects on the NPF of insulin and glucose, suggesting different impacts of arabinoxylan and resistant starch on human health.
Increased dietary fiber (DF) fermentation and short-chain fatty acid (SCFA) production may stimulate peptide tyrosine-tyrosine (PYY) secretion. In this study, the effects of hindgut SCFA production on postprandial PYY plasma levels were assessed using different experimental diets in a porto-arterial catheterized pig model. The pigs were fed experimental diets varying in source and levels of DF for one week in 3×3 Latin square designs. The DF sources were whole-wheat grain, wheat aleurone, rye aleurone-rich flour, rye flakes, and resistant starch. Postprandial blood samples were collected from the catheters and analyzed for PYY levels and net portal appearance (NPA) of PYY was correlated to NPA of SCFA. No significant effects of diets on NPA of PYY were observed (P > 0.05), however, resistant starch supplementation increased postprandial NPA of PYY levels by 37 to 54% compared with rye-based and Western-style control diets (P = 0.19). This increase was caused by higher mesenteric artery and portal vein PYY plasma levels (P < 0.001) and was independent of SCFA absorption (P > 0.05). The PYY levels were higher in response to the second daily meal compared with the first daily meal (P < 0.001), but similar among diets (P > 0.10). In conclusion, the increased postprandial PYY responses in pigs fed with different levels and sources of DF are not caused by an increased SCFA absorption and suggest that other mechanisms such as neural reflexes and possibly an increased flow of digesta in the small intestine may be involved. The content of DF and SCFA production did not affect PYY levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.