In recent years, implicit stochastic Runge-Kutta (SRK) methods have been developed both for strong and weak approximations. For these methods, the stage values are only given implicitly. However, in practice these implicit equations are solved by iterative schemes such as simple iteration, modified Newton iteration or full Newton iteration. We employ a unifying approach for the construction of stochastic B-series which is valid both for Itô-and Stratonovich-stochastic differential equations (SDEs) and applicable both for weak and strong convergence to analyze the order of the iterated Runge-Kutta method. Moreover, the analytical techniques applied in this paper can be of use in many other similar contexts.
The purpose of this paper is to construct methods for solving stiff ODEs, in particular singular perturbation problems. We consider embedded pairs of singly diagonally implicit Runge-Kutta methods with an explicit first stage (ESDIRKs). Stiffly accurate pairs of order 3/2, 4/3 and 5/4 are constructed.
The paper deals with the numerical treatment of stochastic differential-algebraic equations of index one with a scalar driving Wiener process. Therefore, a particularly customized stochastic Runge-Kutta method is introduced. Order conditions for convergence with order 1.0 in the mean-square sense are calculated and coefficients for some schemes are presented. The proposed schemes are stiffly accurate and applicable to nonlinear stochastic differential-algebraic equations. As an advantage they do not require the calculation of any pseudo-inverses or projectors. Further, the mean-square stability of the proposed schemes is analyzed and simulation results are presented bringing out their good performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.