The paper deals with the numerical treatment of stochastic differential-algebraic equations of index one with a scalar driving Wiener process. Therefore, a particularly customized stochastic Runge-Kutta method is introduced. Order conditions for convergence with order 1.0 in the mean-square sense are calculated and coefficients for some schemes are presented. The proposed schemes are stiffly accurate and applicable to nonlinear stochastic differential-algebraic equations. As an advantage they do not require the calculation of any pseudo-inverses or projectors. Further, the mean-square stability of the proposed schemes is analyzed and simulation results are presented bringing out their good performance.
A variable step size control algorithm for the weak approximation of stochastic differential equations is introduced. The algorithm is based on embedded Runge-Kutta methods which yield two approximations of different orders with a negligible additional computational effort. The difference of these two approximations is used as an estimator for the local error of the less precise approximation. Some numerical results are presented to illustrate the effectiveness of the introduced step size control method.
The problem of solving stochastic differential-algebraic equations (SDAEs) of index 1 with a scalar driving Wiener process is considered. Recently, the authors have proposed a class of stiffly accurate stochastic Runge-Kutta (SRK) methods that do not involve any pseudoinverses or projectors for the numerical solution of the problem. Based on this class of approximation methods, classifications for the coefficients of stiffly accurate SRK methods attaining strong order 0.5 as well as strong order 1.0 are calculated. Further, the meansquare stability of the considered class of SRK methods is analyzed. As the main result, families of A-stable efficient order 0.5 and 1.0 stiffly accurate SRK methods with a minimal number of stages for SDEs as well as for SDAEs are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.