The transport of mRNAs into developing dendrites and axons may be a basic mechanism to localize cytoskeletal proteins to growth cones and influence microfilament organization. Using isoform-specific antibodies and probes for in situ hybridization, we observed distinct localization patterns for beta- and gamma-actin within cultured cerebrocortical neurons. beta-Actin protein was highly enriched within growth cones and filopodia, in contrast to gamma-actin protein, which was distributed uniformly throughout the cell. beta-Actin protein also was shown to be peripherally localized after transfection of beta-actin cDNA bearing an epitope tag. beta-Actin mRNAs were localized more frequently to neuronal processes and growth cones, unlike gamma-actin mRNAs, which were restricted to the cell body. The rapid localization of beta-actin mRNA, but not gamma-actin mRNA, into processes and growth cones could be induced by dibutyryl cAMP treatment. Using high-resolution in situ hybridization and image-processing methods, we showed that the distribution of beta-actin mRNA within growth cones was statistically nonrandom and demonstrated an association with microtubules. beta-Actin mRNAs were detected within minor neurites, axonal processes, and growth cones in the form of spatially distinct granules that colocalized with translational components. Ultrastructural analysis revealed polyribosomes within growth cones that colocalized with cytoskeletal filaments. The transport of beta-actin mRNA into developing neurites may be a sequence-specific mechanism to synthesize cytoskeletal proteins directly within processes and growth cones and would provide an additional means to deliver cytoskeletal proteins over long distances.
In the PNS, myelin basic protein (MBP) appears not to be essential for myelination, for in shiverer (shi) and mld mutant mice peripheral nerves, where MBP is not or only poorly expressed, myelination occurs normally. Only a few morphological abnormalities, i.e. reduction in axon calibre and myelin sheath thickness, and aberrant Schwann cell-axon contacts, have been reported. Here, we document a consistent difference between shi and wild type (wt) myelinated sciatic nerve fibres. The number of Schmidt-Lanterman incisures seen in longitudinally and transversely-sectioned sciatic nerves, or in teased fibres stained for the presence of F-actin, is dramatically increased in homozygous shi mice. With both methods, a twofold increase in Schmidt-Lanterman incisure number is seen in 15-day-old mice, the earliest time examined. The increase is slightly greater in nerve fibres from 30- and 90-day-old mice. The overproduction of Schmidt-Lanterman incisures in shi occurs in spite of the fact that the mean diameter of myelinated fibres in shi sciatic nerves is smaller than in wt sciatic nerves. These results lead us to suggest that the increase in Schmidt-Lanterman incisure density in shi compensates for a defect in Schwann cell-axon communication.
Observations that polyribosomes are localized near dendritic spines and beneath synapses has led to a hypothesis of synapse-specific gene expression in which local synthesis would provide a mechanism to influence synaptic structure and strength (l).The active transport of specific mRNAs into dendrites and spines may be a regulated mechanism to target synaptic and regulatory proteins to postsynaptic locations and influence synaptic activity. RNA granules labeled with the vital dye, SYT014, were observed to localize into developing neurites in response to the neurotrophin, NT-3 (2). Neurotrophins have been shown to enhance synaptic activity by a process which requires new protein synthesis (3). The identity and source of newly synthesized proteins which are required to enhance synaptic strength in response to NT-3 are unknown. CaMKIIαRNA localization into dendrites has been shown to occur during long term potentiation (4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.