Internal waves describe the (linear) response of an incompressible stably stratified fluid to small perturbations. The inclination of their group velocity with respect to the vertical is completely determined by their frequency. Therefore the reflection on a sloping boundary cannot follow Descartes' laws, and it is expected to be singular if the slope has the same inclination as the group velocity. In this paper, we prove that in this critical geometry the weakly viscous and weakly nonlinear wave equations have actually a solution which is well approximated by the sum of the incident wave packet, a reflected second harmonic and some boundary layer terms. This result confirms the prediction by Dauxois and Young, and provides precise estimates on the time of validity of this approximation.
International audienceWe consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength $\epsilon$. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit $\epsilon = 0$ is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in previous works, in which the special case of a Dirichlet condition at the rough boundary was examined
This paper is devoted to the well-posedness of the stationary 3d Stokes-Coriolis system set in a half-space with rough bottom and Dirichlet data which does not decrease at space infinity. Our system is a linearized version of the Ekman boundary layer system. We look for a solution of infinite energy in a space of Sobolev regularity. Following an idea of Gérard-Varet and Masmoudi, the general strategy is to reduce the problem to a bumpy channel bounded in the vertical direction thanks to a transparent boundary condition involving a Dirichlet to Neumann operator. Our analysis emphasizes some strong singularities of the Stokes-Coriolis operator at low tangential frequencies. One of the main features of our work lies in the definition of a Dirichlet to Neumann operator for the Stokes-Coriolis system with data in the Kato space H
Our concern is the computation of optimal shapes in problems involving (−∆) 1/2 . We focus on the energy J(Ω) associated to the solution u Ω of the basic Dirichlet problem (−∆) 1/2 u Ω = 1 in Ω, u = 0 in Ω c . We show that regular minimizers Ω of this energy under a volume constraint are disks. Our proof goes through the explicit computation of the shape derivative (that seems to be completely new in the fractional context), and a refined adaptation of the moving plane method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.