The concern of this paper is the Cauchy problem for the Prandtl equation. This problem is known to be well-posed for analytic data [13,10], or for data with monotonicity properties [11,15]. We prove here that it is linearly ill-posed in Sobolev type spaces. The key of the analysis is the construction, at high tangential frequencies, of unstable quasimodes for the linearization around solutions with non-degenerate critical points. Interestingly, the strong instability is due to vicosity, which is coherent with well-posedness results obtained for the inviscid version of the equation [8]. A numerical study of this instability is also provided.
It has been thought for a while that the Prandtl system is only well-posed under the Oleinik monotonicity assumption or under an analyticity assumption. We show that the Prandtl system is actually locally well-posed for data that belong to the Gevrey class 7/4 in the horizontal variable x. Our result improves the classical local well-posedness result for data that are analytic in x (that is Gevrey class 1). The proof uses new estimates, based on non-quadratic energy functionals.
The general concern of this paper is the effect of rough boundaries on fluids. We consider a stationary flow, governed by incompressible Navier-Stokes equations, in an infinite domain bounded by two horizontal rough plates. The roughness is modeled by a spatially homogeneous random field, with characteristic size ". A mathematical analysis of the flow for small " is performed. The Navier's wall law is rigorously deduced from this analysis. This substantially extends former results obtained in the case of periodic roughness, notably in [16,17].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.