Major EV-B populations characterized by 5′ terminal deletions (5′TD) have been shown to be associated with the development of myocarditis and type 1 diabetes in mice or humans. To date, the dynamics of EV-B 5′TD-RNA forms’ emergence during the course of infection and their impact on cellular functions remain unclear. Using a RACE-PCR approach in CVB3/28-infected mouse organs, we showed an early (3 days post infection, DPI) emergence of major 5′TD populations associated with minor full-length RNA forms. Viral replication activities with infectious particle production were associated with heart, liver, and pancreas acute inflammatory lesions, whereas clearance of viral RNA without organ lesions was observed in the brain, lung, intestines, and muscles from 3 to 7 DPI. At 28 DPI, low viral RNA levels, +/-RNA ratios <5 associated with viral protein 1 expression revealed a persistent infection in the heart and pancreas. This persistent infection was characterized by molecular detection of only 5′TD RNA forms that were associated with dystrophin cleavage in the heart and insulin production impairment in beta-pancreatic cells. These results demonstrated that major EV-B 5′TD RNA forms can be early selected during systemic infection and that their maintenance may drive EV-induced acute and persistent infections with target cell dysfunctions.
Emergence of 5′ terminally deleted coxsackievirus-B RNA forms (CVB-TD) have been associated with the development of human diseases. These CVB-TD RNA forms have been detected in mouse pancreas during acute or persistent experimental infections. To date, the impact of the replication activities of CVB-TD RNA forms on insulin metabolism remains unexplored. Using an immunocompetent mouse model of CVB3/28 infection, acute and persistent infections of major CVB-TD populations were evidenced in the pancreas. The inoculation of mice with homogenized pancreases containing major CVB-TD populations induced acute and chronic pancreatic infections with pancreatitis. In the mouse pancreas, viral capsid protein 1 (VP1) expression colocalized with a decrease in beta cells insulin content. Moreover, in infected mouse pancreases, we showed a decrease in pro-hormone convertase 2 (PCSK2) mRNA, associated with a decrease in insulin plasmatic concentration. Finally, transfection of synthetic CVB-TD50 RNA forms into cultured rodent pancreatic beta cells demonstrated that viral replication with protein synthesis activities decreased the PCSK2 mRNA expression levels, impairing insulin secretion. In conclusion, our results show that the emergence and maintenance of major CVB-TD RNA replicative forms in pancreatic beta cells can play a direct, key role in the pathophysiological mechanisms leading to the development of type 1 diabetes.
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5'end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5’ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I or MDA5 receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host-cell interactions driving the development of acute or persistent EV-B infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.