Differential kinetics of RNA loads and infectious viral levels in the upper respiratory tract between asymptomatic and symptomatic SARS-CoV-2 infected adult outpatients remain unclear limiting recommendations that may guide clinical management, infection control measures and occupational health decisions. In the present investigation, 496 (2.8%) of 17,911 French adult outpatients were positive for an upper respiratory tract SARS-CoV-2 RNA detection by a quantitative RT-PCR assay, of which 180 (36.3%) were COVID-19 asymptomatic. Of these adult asymptomatic viral shedders, 75% had mean to high RNA viral loads (Ct values < 30) which median value was significantly higher than that observed in symptomatic subjects (P = 0.029), and 50.6% were positive by cell culture assays of their upper respiratory tract specimens. Our findings indicate that COVID-19 asymptomatic adult outpatients are significant viable SARS-CoV-2 shedders in their upper respiratory tract playing a major potential role as SARS-CoV-2 transmitters in various epidemiological transmission chains, promoting COVID-19 resurgence in populations.
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5′ end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5′ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host–cell interactions driving the development of acute or persistent EV-B infections.
Emergence of 5′ terminally deleted coxsackievirus-B RNA forms (CVB-TD) have been associated with the development of human diseases. These CVB-TD RNA forms have been detected in mouse pancreas during acute or persistent experimental infections. To date, the impact of the replication activities of CVB-TD RNA forms on insulin metabolism remains unexplored. Using an immunocompetent mouse model of CVB3/28 infection, acute and persistent infections of major CVB-TD populations were evidenced in the pancreas. The inoculation of mice with homogenized pancreases containing major CVB-TD populations induced acute and chronic pancreatic infections with pancreatitis. In the mouse pancreas, viral capsid protein 1 (VP1) expression colocalized with a decrease in beta cells insulin content. Moreover, in infected mouse pancreases, we showed a decrease in pro-hormone convertase 2 (PCSK2) mRNA, associated with a decrease in insulin plasmatic concentration. Finally, transfection of synthetic CVB-TD50 RNA forms into cultured rodent pancreatic beta cells demonstrated that viral replication with protein synthesis activities decreased the PCSK2 mRNA expression levels, impairing insulin secretion. In conclusion, our results show that the emergence and maintenance of major CVB-TD RNA replicative forms in pancreatic beta cells can play a direct, key role in the pathophysiological mechanisms leading to the development of type 1 diabetes.
We assessed relationships between early peripheral blood type I interferons (IFN) levels, clinical new early warning scores (NEWS), and clinical outcomes in hospitalized coronavirus disease‐19 (COVID‐19) adult patients. Early IFN‐β levels were lower among patients who further required intensive care unit (ICU) admission than those measured in patients who did not require an ICU admission during severe acute respiratory syndrome coronavirus type 2 infection. IFN‐β levels were inversely correlated with NEWS only in the subgroup of patients who further required ICU admission. To assess whether peripheral blood IFN‐β levels could be a potential relevant biomarker to predict further need for ICU admission, we performed receiver operating characteristic (ROC) curve analyses that showed for all study patients an area under ROC curve of 0.77 growing to 0.86 (p = 0.003) when the analysis was restricted to a subset of patients with NEWS ≥5 at the time of hospital admission. Overall, our findings indicated that early peripheral blood IFN‐β levels might be a relevant predictive marker of further need for an ICU admission in hospitalized COVID‐19 adult patients, specifically when clinical score (NEWS) was graded as upper than 5 at the time of hospital admission.
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5'end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5’ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I or MDA5 receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host-cell interactions driving the development of acute or persistent EV-B infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.